會(huì)計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-3-EOC-SM-Updated_第1頁
會(huì)計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-3-EOC-SM-Updated_第2頁
會(huì)計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-3-EOC-SM-Updated_第3頁
會(huì)計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-3-EOC-SM-Updated_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

SolutionsManual–Chapter3

SolutionstoDiscussionQuestions

Whatisthedifferencebetweenatargetandaclass?

Atargetisaspecificattributeorvaluethatananalystistryingtoevaluate,suchasaninterestrateorscore.Aclassisacategoryorgroupingthatadataobjectisassignedto,suchasfraudornotfraud.

Whatisthedifferencebetweenasupervisedandanunsupervisedapproach?

Thesupervisedapproachreliesonananalysisofpastdatatopredicttheclassassignmentorregressedvalueforanewunknownobservation.Classificationandregressionarepopularsupervisedmodels.Anunsupervisedapproachisusedtoexploredataanddiscoverpreviously-unknownpatterns.Clusteringandprofilingarecommonunsupervisedmodelsthathelpresearchersidentifygroupsofdatathatmaynotbeobvious.

Whatisthedifferencebetweentrainingdatasetsandtest(ortesting)datasets?

Supervisedmodelsrelyonpreviously-analyzedhistoricaldatatopredictfutureoutcomes.Forexample,anauditormayidentifyfraudulenttransactionsandlabelthoseasfraud.Aportionofthatdataisusedtotrainthemodel,meaningthatatoolanalyzesthehistoricaltrainingdataandtriestoidentifytheattributesthatarethebestpredictorsofaclassorvalue.Oncethemodelhasbeendeveloped,anotherportionofthehistoricaldataisusedtotestthemodeltoseewhichvaluethemodelpredictsforthatdata.Thetoolthencomparesthepredictedvaluesinthetestdatasetstotheactualvaluesinthetestdatasettoevaluatethemodelforaccuracy.Asetofhistoricaldatacanbesplitmanywaysintotrainingandtestingdatasets.

UsingFigure3-5asaguide,whatarethreedataapproachesassociatedwiththesupervisedapproach?

Classification,Causalmodeling,andregression.

UsingFigure3-5asaguide,whatarethreedataapproachesassociatedwiththeunsupervisedapproach?

Profiling,co-occurrencegrouping,andclustering.

Howmightthedatareductionapproachbeusedinauditing?

Onceanauditorhasidentifiedtypesofdatathatarehighrisk(e.g.transactionsonweekends,vendorswithP.O.Boxaddresses)theymayfilterthedatatoshowonlythosetypesoftransactions(basedonthedate,oraddressfieldinthiscase).

Alsomentionedinthechapterarefilteringonsuspiciousvendornames,sequencechecks,andgapdetection.

Howmightclassificationbeusedinapprovingordenyingapotentialfraudulentcreditcardtransaction?

Inthisanalysis,theclassassignedtoaspecificcreditcardtransactionwouldbeeither“fraud”or“notfraud”.Historicalrecordswouldbeassignedoneofthesetwoclasses,basedoncustomerclaims,etc.Aclassificationmodelwouldusepartofthishistoricaldatatotrainamodeltoidentifytheattributesthatarethebestpredictersofafraudulenttransaction.Thentheremainingdatawouldbeusedtovalidatethemodelandtestforaccuracy.

Howissimilaritymatchingdifferentfromclustering?

Similaritymatchinghasaspecificgoalinmind,suchastryingtofindcustomerswhoarelikeyourbestcustomers.Inthiscase,wehaveaspecifictargetandaretryingtolocatesimilarobjects.Clusteringisanattempttofindnaturalgroupingswithoutbeingdrivenbyaspecificpurpose.Clusteringismoreexploratorywheresimilaritymatchingassumesyouknowwhatyou’relookingfor.

Howdoesfuzzymatchwork?Giveanaccountingsituationwhereitmightbemostuseful?

Afuzzymatchusesprobabilitytoshowlikelymatches,basedonhowmuchthetwovalueshaveincommon.Forexample,tworecordsthatcontainaddresseswithsomedefinedpercentageofmatchingcharacterswouldbeconsideredafuzzymatch.Thisallowsauditorstofindrecordsthatapproximateeachotherinthecasewhereanemployeemighttrytoconcealaconnectionbyvaryingthevaluestoavoidexactmatches.

Compareandcontrasttheprofilingdataapproachandthedevelopmentofstandardcostforaunitofproductionatamanufacturingcompany?Aretheysubstantiallythesameordotheyhavedifferences?

Dataprofilingmaybeusedtodetermineproductioncostandvolumebehaviortodetermineabenchmarkforfuturecostandvolume.Thisislikewhatamanagerofamanufacturingcompanydoesindeterminingstandardcostforaunitofproduction.Theyareverysimilarinthatthegoalistocalculateabenchmarkforcontrollingpurposes.

Themaindifferencesisthatdataprofilingcanincorporatealargeramountofdata(suchasmarkettrends,changingfuelprices,orweatherpatterns)toautomaticallygenerateandcontinuallyupdateamoreprecisebenchmark.

Figures3-1through3-4suggestthatvolumeanddistancearethebestpredictorsof“daystoship”forawholesalecompany?Anyothervariablesthatwouldalsobeusefulinpredictingthenumberof“daystoship”?

Answersvary,butsomesuggestedvariablesmightbenumberofemployeesworking,dayoftheweek,logisticscapacity,temperature,etc.

SolutionstoProblems

Relatedpartytransactionsinvolvepeoplewhohaveclosetiestoanorganization,suchasboardmembers.Assumeanaccountingmanagerdecidesthatfuzzymatchingwouldbeausefultechniquetofindundisclosedrelatedpartytransactions.Whatdatawouldthemanagerneedtotestforrelatedpartytransactions?Whatwouldtheprocesslooklike?

Toperformfuzzymatching,themanagerwouldneedalistofrelatedpartiesandtheircontactinformation.Additionally,shewouldneedthecontactinformationforvendorsandcustomersthatparticipateincompanytransactions.

Themanagerwouldjointherelatedpartycontacttablewiththevendorand/orcustomercontactinformation.Sinceitislikelythattheaddresseswillbesimilarbutnotexact,usingthefuzzymatchtoolinExcelorIDEAwouldhavethemanagerselectthesimilarfields,inthiscaseaddressandzipcode.Themanagerwouldthenreviewthetransactionsthatinvolvevendorsorcustomersthatmatchtoseeiftheyarerelatedpartytransactions.

Anauditoristryingtofigureoutiftheinventoryatanelectronicsstorechainisobsolete.Whatcharacteristicsmightbeusedtohelpestablishamodelpredictinginventoryobsolescence?

Answersmayvary.Theauditormaylookatsimplemetricssuchastheageoftheinventory(e.gbasedonpurchasedate),orratios(e.g.turnoverforspecificproducts).Ifthereisarecordofinventorythathasbeendeemedobsoleteinthepast,theauditorsmaybeabletodevelopamodelbasedoncharacteristicsofthoseitems(e.g.size,type,manufacturer).Aclassificationmodelwoulddeterminetheprobabilityofwhichitemsareobsoleteornotobsoleteandcouldbeusedtoevaluateaclient’scompleteinventory.

Anauditoristryingtofigureoutifthegoodwillitsclientrecognizedwhenitpurchasedafactoryhasbecomeimpaired.Whatcharacteristicsmightbeusedtohelpestablishamodelpredictinggoodwillimpairment?

Goodwillimpairmentiscalculatedusingatwo-steptest.Firsttheauditormustdeterminewhetherthegoodwillisimpairedbycomparingthebookvaluewiththefairvalue.Thentheauditormustcalculatetheimpliedfairvalueofgoodwillandcollectevidenceastowhethermanagementrecordedtheimpairment.

Amodelwouldneedtolookatbothquestionsbasedoninput(e.g.accountbalances)fromthegeneralledgeranddeterminantsoffairvalue(e.g.marketdata,assessmentdata).Tocreateatrulypredictivemodel,theauditorwouldcollectdataonimpairmentfromotherclientsandusethoseobservationstobuildamodelthatcouldbeusedtopredictwhetheranewclientisalsoimpaired.

Thisprovidesaninterestingdiscussiononprivacyconcerns.Forexample,wouldaclientbewillingtosharedatathatcouldbeusedtobuildamodelfortheauditors?Mostlikely,no.Couldtheauditorbuildamodeliftheirclienthadmultipleacquireddivisionswithahistoryofimpairment?Probably,yes,buttheremaynotbesufficientobservationstomakeanaccurateenoughprediction.

Howmightclusteringbeusedtoexplaincustomersthatoweusmoney(accountsreceivable)?

Oneformofclusteringthatisalreadyusedforaccountsreceivableistheagingofaccounts.Theaginggroupsaccountsbyhowoldthereceivableis,withtheexpectationthatolderaccountsarelesslikelytobecollected.

Agingreliesononlyonedimension,time,andfocusesonthetransaction,notthecustomer.Clusteringmaybeusefulindeterminingwhethercustomersformnaturalgroupingsrelativetotheirabilitytopaytheirbills,basedoncorrelatedattributes,suchaslocation,size,volumeoforders.

Ifwehavegooddatathatshowswhichcustomershavehadaccountswrittenoff,wemayexpandthismodeltopredictthelikelihoodofnonpaymentbyusingaclassificationmodel.

Whywouldtheuseofdatareductionbeusefultohighlightrelatedpartytransactions(e.g.,CEOhasherownseparatecompanythatthemaincompanydoesbusinesswith)?

Answerswillvary.Datareductioncanbeusedtofiltertransactionsonspecificattributes.Byremovingunrelatedtransactionsfromtheanalysis,managementoranauditorcouldclearlyseethescopeandvolumeoftransactionsandeitheracceptthosewithadisclosureormakearecommendationtoimplementbetterinternalcontrolstopreventthemfromoccurring.

HowcouldXBRLbeusedbyaninvestortodoananalysisoftheindustry’sinventoryturnover?

AssumingXBRLdataisvalidandaccurate,aninvestorwouldidentifyspecificaccounttags(e.g.InventoryNet,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論