下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
SolutionsManual–Chapter3
SolutionstoDiscussionQuestions
Whatisthedifferencebetweenatargetandaclass?
Atargetisaspecificattributeorvaluethatananalystistryingtoevaluate,suchasaninterestrateorscore.Aclassisacategoryorgroupingthatadataobjectisassignedto,suchasfraudornotfraud.
Whatisthedifferencebetweenasupervisedandanunsupervisedapproach?
Thesupervisedapproachreliesonananalysisofpastdatatopredicttheclassassignmentorregressedvalueforanewunknownobservation.Classificationandregressionarepopularsupervisedmodels.Anunsupervisedapproachisusedtoexploredataanddiscoverpreviously-unknownpatterns.Clusteringandprofilingarecommonunsupervisedmodelsthathelpresearchersidentifygroupsofdatathatmaynotbeobvious.
Whatisthedifferencebetweentrainingdatasetsandtest(ortesting)datasets?
Supervisedmodelsrelyonpreviously-analyzedhistoricaldatatopredictfutureoutcomes.Forexample,anauditormayidentifyfraudulenttransactionsandlabelthoseasfraud.Aportionofthatdataisusedtotrainthemodel,meaningthatatoolanalyzesthehistoricaltrainingdataandtriestoidentifytheattributesthatarethebestpredictorsofaclassorvalue.Oncethemodelhasbeendeveloped,anotherportionofthehistoricaldataisusedtotestthemodeltoseewhichvaluethemodelpredictsforthatdata.Thetoolthencomparesthepredictedvaluesinthetestdatasetstotheactualvaluesinthetestdatasettoevaluatethemodelforaccuracy.Asetofhistoricaldatacanbesplitmanywaysintotrainingandtestingdatasets.
UsingFigure3-5asaguide,whatarethreedataapproachesassociatedwiththesupervisedapproach?
Classification,Causalmodeling,andregression.
UsingFigure3-5asaguide,whatarethreedataapproachesassociatedwiththeunsupervisedapproach?
Profiling,co-occurrencegrouping,andclustering.
Howmightthedatareductionapproachbeusedinauditing?
Onceanauditorhasidentifiedtypesofdatathatarehighrisk(e.g.transactionsonweekends,vendorswithP.O.Boxaddresses)theymayfilterthedatatoshowonlythosetypesoftransactions(basedonthedate,oraddressfieldinthiscase).
Alsomentionedinthechapterarefilteringonsuspiciousvendornames,sequencechecks,andgapdetection.
Howmightclassificationbeusedinapprovingordenyingapotentialfraudulentcreditcardtransaction?
Inthisanalysis,theclassassignedtoaspecificcreditcardtransactionwouldbeeither“fraud”or“notfraud”.Historicalrecordswouldbeassignedoneofthesetwoclasses,basedoncustomerclaims,etc.Aclassificationmodelwouldusepartofthishistoricaldatatotrainamodeltoidentifytheattributesthatarethebestpredictersofafraudulenttransaction.Thentheremainingdatawouldbeusedtovalidatethemodelandtestforaccuracy.
Howissimilaritymatchingdifferentfromclustering?
Similaritymatchinghasaspecificgoalinmind,suchastryingtofindcustomerswhoarelikeyourbestcustomers.Inthiscase,wehaveaspecifictargetandaretryingtolocatesimilarobjects.Clusteringisanattempttofindnaturalgroupingswithoutbeingdrivenbyaspecificpurpose.Clusteringismoreexploratorywheresimilaritymatchingassumesyouknowwhatyou’relookingfor.
Howdoesfuzzymatchwork?Giveanaccountingsituationwhereitmightbemostuseful?
Afuzzymatchusesprobabilitytoshowlikelymatches,basedonhowmuchthetwovalueshaveincommon.Forexample,tworecordsthatcontainaddresseswithsomedefinedpercentageofmatchingcharacterswouldbeconsideredafuzzymatch.Thisallowsauditorstofindrecordsthatapproximateeachotherinthecasewhereanemployeemighttrytoconcealaconnectionbyvaryingthevaluestoavoidexactmatches.
Compareandcontrasttheprofilingdataapproachandthedevelopmentofstandardcostforaunitofproductionatamanufacturingcompany?Aretheysubstantiallythesameordotheyhavedifferences?
Dataprofilingmaybeusedtodetermineproductioncostandvolumebehaviortodetermineabenchmarkforfuturecostandvolume.Thisislikewhatamanagerofamanufacturingcompanydoesindeterminingstandardcostforaunitofproduction.Theyareverysimilarinthatthegoalistocalculateabenchmarkforcontrollingpurposes.
Themaindifferencesisthatdataprofilingcanincorporatealargeramountofdata(suchasmarkettrends,changingfuelprices,orweatherpatterns)toautomaticallygenerateandcontinuallyupdateamoreprecisebenchmark.
Figures3-1through3-4suggestthatvolumeanddistancearethebestpredictorsof“daystoship”forawholesalecompany?Anyothervariablesthatwouldalsobeusefulinpredictingthenumberof“daystoship”?
Answersvary,butsomesuggestedvariablesmightbenumberofemployeesworking,dayoftheweek,logisticscapacity,temperature,etc.
SolutionstoProblems
Relatedpartytransactionsinvolvepeoplewhohaveclosetiestoanorganization,suchasboardmembers.Assumeanaccountingmanagerdecidesthatfuzzymatchingwouldbeausefultechniquetofindundisclosedrelatedpartytransactions.Whatdatawouldthemanagerneedtotestforrelatedpartytransactions?Whatwouldtheprocesslooklike?
Toperformfuzzymatching,themanagerwouldneedalistofrelatedpartiesandtheircontactinformation.Additionally,shewouldneedthecontactinformationforvendorsandcustomersthatparticipateincompanytransactions.
Themanagerwouldjointherelatedpartycontacttablewiththevendorand/orcustomercontactinformation.Sinceitislikelythattheaddresseswillbesimilarbutnotexact,usingthefuzzymatchtoolinExcelorIDEAwouldhavethemanagerselectthesimilarfields,inthiscaseaddressandzipcode.Themanagerwouldthenreviewthetransactionsthatinvolvevendorsorcustomersthatmatchtoseeiftheyarerelatedpartytransactions.
Anauditoristryingtofigureoutiftheinventoryatanelectronicsstorechainisobsolete.Whatcharacteristicsmightbeusedtohelpestablishamodelpredictinginventoryobsolescence?
Answersmayvary.Theauditormaylookatsimplemetricssuchastheageoftheinventory(e.gbasedonpurchasedate),orratios(e.g.turnoverforspecificproducts).Ifthereisarecordofinventorythathasbeendeemedobsoleteinthepast,theauditorsmaybeabletodevelopamodelbasedoncharacteristicsofthoseitems(e.g.size,type,manufacturer).Aclassificationmodelwoulddeterminetheprobabilityofwhichitemsareobsoleteornotobsoleteandcouldbeusedtoevaluateaclient’scompleteinventory.
Anauditoristryingtofigureoutifthegoodwillitsclientrecognizedwhenitpurchasedafactoryhasbecomeimpaired.Whatcharacteristicsmightbeusedtohelpestablishamodelpredictinggoodwillimpairment?
Goodwillimpairmentiscalculatedusingatwo-steptest.Firsttheauditormustdeterminewhetherthegoodwillisimpairedbycomparingthebookvaluewiththefairvalue.Thentheauditormustcalculatetheimpliedfairvalueofgoodwillandcollectevidenceastowhethermanagementrecordedtheimpairment.
Amodelwouldneedtolookatbothquestionsbasedoninput(e.g.accountbalances)fromthegeneralledgeranddeterminantsoffairvalue(e.g.marketdata,assessmentdata).Tocreateatrulypredictivemodel,theauditorwouldcollectdataonimpairmentfromotherclientsandusethoseobservationstobuildamodelthatcouldbeusedtopredictwhetheranewclientisalsoimpaired.
Thisprovidesaninterestingdiscussiononprivacyconcerns.Forexample,wouldaclientbewillingtosharedatathatcouldbeusedtobuildamodelfortheauditors?Mostlikely,no.Couldtheauditorbuildamodeliftheirclienthadmultipleacquireddivisionswithahistoryofimpairment?Probably,yes,buttheremaynotbesufficientobservationstomakeanaccurateenoughprediction.
Howmightclusteringbeusedtoexplaincustomersthatoweusmoney(accountsreceivable)?
Oneformofclusteringthatisalreadyusedforaccountsreceivableistheagingofaccounts.Theaginggroupsaccountsbyhowoldthereceivableis,withtheexpectationthatolderaccountsarelesslikelytobecollected.
Agingreliesononlyonedimension,time,andfocusesonthetransaction,notthecustomer.Clusteringmaybeusefulindeterminingwhethercustomersformnaturalgroupingsrelativetotheirabilitytopaytheirbills,basedoncorrelatedattributes,suchaslocation,size,volumeoforders.
Ifwehavegooddatathatshowswhichcustomershavehadaccountswrittenoff,wemayexpandthismodeltopredictthelikelihoodofnonpaymentbyusingaclassificationmodel.
Whywouldtheuseofdatareductionbeusefultohighlightrelatedpartytransactions(e.g.,CEOhasherownseparatecompanythatthemaincompanydoesbusinesswith)?
Answerswillvary.Datareductioncanbeusedtofiltertransactionsonspecificattributes.Byremovingunrelatedtransactionsfromtheanalysis,managementoranauditorcouldclearlyseethescopeandvolumeoftransactionsandeitheracceptthosewithadisclosureormakearecommendationtoimplementbetterinternalcontrolstopreventthemfromoccurring.
HowcouldXBRLbeusedbyaninvestortodoananalysisoftheindustry’sinventoryturnover?
AssumingXBRLdataisvalidandaccurate,aninvestorwouldidentifyspecificaccounttags(e.g.InventoryNet,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 土木工程設(shè)計(jì)院實(shí)習(xí)日記
- 內(nèi)勤工作人員述職報(bào)告范文
- 無編站骨干選拔理論考試(戰(zhàn)訓(xùn)業(yè)務(wù)理論)練習(xí)卷附答案
- 高考數(shù)學(xué)復(fù)習(xí)解答題提高第一輪專題復(fù)習(xí)專題03數(shù)列求通項(xiàng)(構(gòu)造法、倒數(shù)法)(典型題型歸類訓(xùn)練)(學(xué)生版+解析)
- 專題8.3 統(tǒng)計(jì)和概率的簡(jiǎn)單應(yīng)用(鞏固篇)(專項(xiàng)練習(xí))-2022-2023學(xué)年九年級(jí)數(shù)學(xué)下冊(cè)基礎(chǔ)知識(shí)專項(xiàng)講練(蘇科版)
- 語文統(tǒng)編版(2024)一年級(jí)上冊(cè)識(shí)字7 小書包(新) 教案
- 廣東高考語法填空專項(xiàng)訓(xùn)練(動(dòng)詞)
- 高中語法回顧-Englsh Sentence Structures 英語句子結(jié)構(gòu)
- 第4節(jié) 非傳染性疾病課件
- 2024屆陜西省藍(lán)田縣高三4月摸底考試數(shù)學(xué)試題
- 基于Android的樂跑APP設(shè)計(jì)
- 銷售人員人才畫像
- 消殺服務(wù)承包合同范本
- 上海市世外中學(xué)2023-2024學(xué)年九年級(jí)上學(xué)期期中物理測(cè)試卷
- 《老年抑郁癥》課件
- 00015-英語二自學(xué)教程-unit12
- 2023年開放大學(xué)理工英語4(邊學(xué)邊練)題目與答案
- 關(guān)于政府法律顧問工作情況的調(diào)研報(bào)告
- 文件資料交接清單
- 介紹福建龍巖的PPT模板
- 縉云縣中小學(xué)用地規(guī)模一覽表
評(píng)論
0/150
提交評(píng)論