海南省儋州一中2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第1頁
海南省儋州一中2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第2頁
海南省儋州一中2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第3頁
海南省儋州一中2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第4頁
海南省儋州一中2025屆高二上數(shù)學(xué)期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

海南省儋州一中2025屆高二上數(shù)學(xué)期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,已知三棱錐,點,分別為,的中點,且,,,用,,表示,則等于()A. B.C. D.2.在等差數(shù)列中,若的值是A.15 B.16C.17 D.183.橢圓=1的一個焦點為F,過原點O作直線(不經(jīng)過焦點F)與橢圓交于A,B兩點,若△ABF的面積是20,則直線AB的斜率為()A. B.C. D.4.直線的一個法向量為()A. B.C. D.5.已知線段AB的端點B在直線l:y=-x+5上,端點A在圓C1:上運動,線段AB的中點M的軌跡為曲線C2,若曲線C2與圓C1有兩個公共點,則點B的橫坐標(biāo)的取值范圍是()A.(-1,0) B.(1,4)C.(0,6) D.(-1,5)6.已知數(shù)列中,,則()A. B.C. D.7.已知隨機變量服從正態(tài)分布,,則()A. B.C. D.8.已知隨機變量服從正態(tài)分布,且,則()A.0.1 B.0.2C.0.3 D.0.49.直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M,N兩點,若,則k的取值范圍是()A. B.(-∞,]∪[0,+∞)C. D.10.對任意實數(shù),在以下命題中,正確的個數(shù)有()①若,則;②若,則;③若,則;④若,則A. B.C. D.11.命題“,使得”的否定形式是A.,使得 B.,使得C.,使得 D.,使得12.如果,,那么直線不經(jīng)過的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.將連續(xù)的正整數(shù)填入n行n列的方陣中,使得每行、每列、每條對角線上的數(shù)之和相等,可得到n階幻方.記n階幻方每條對角線上的數(shù)之和為,如圖:,那么的值為___________.14.如圖,在邊長為2的正方形ABCD中,點E,F(xiàn)分別是AB,BC的中A點,將,,,分別沿DE,EF,DF折起,使得A,B,C三點重合于點P,則四面體的外接球表面積為____________.15.若不同的平面的一個法向量分別為,,則與的位置關(guān)系為___________.16.設(shè),,,則動點P的軌跡方程為______,P到坐標(biāo)原點的距離的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,側(cè)面PBC是邊長為2的等邊三角形,M,N分別為AB,AP的中點.過MN的平面與側(cè)面PBC交于EF(1)求證:;(2)若平面平面ABC,,求直線PB與平面PAC所成角的正弦值18.(12分)已知是等差數(shù)列,是各項都為正數(shù)的等比數(shù)列,,再從①;②;③這三個條件中選擇___________,___________兩個作為已知.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)已知的三個頂點的坐標(biāo)分別為,,(1)求邊AC上的中線所在直線方程;(2)求的面積20.(12分)已知函數(shù)()(1)討論函數(shù)的單調(diào)區(qū)間;(2)若有兩個極值點,(),且不等式恒成立,求實數(shù)m的取值范圍21.(12分)為了解某校今年高一年級女生的身體素質(zhì)狀況,從該校高一年級女生中抽取了一部分學(xué)生進行“擲鉛球”的項目測試,成績低于5米為不合格,成績在5至7米(含5米不含7米)的為及格,成績在7米至11米(含7米和11米,假定該校高一女生擲鉛球均不超過11米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成五組,畫出的頻率分布直方圖如圖所示.已知有4名學(xué)生的成績在9米到11米之間(1)求實數(shù)的值及參加“擲鉛球”項目測試的人數(shù);(2)若從此次測試成績最好和最差的兩組中隨機抽取2名學(xué)生再進行其它項目的測試,求所抽取的2名學(xué)生自不同組的概率22.(10分)一項“過關(guān)游戲”規(guī)則規(guī)定:在第關(guān)要拋擲一顆正六面體骰子次,每次擲得的點數(shù)均相互獨立,如果這次拋擲所出現(xiàn)的點數(shù)之和大于,則算過關(guān).(1)這個游戲最多過幾關(guān)?(2)某人連過前兩關(guān)的概率是?(3)某人連過前三關(guān)的概率是?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】連接,先根據(jù)已知條件表示出,再根據(jù)求得結(jié)果.【詳解】連接,如下圖所示:因為為的中點,所以,又因為為的中點,所以,所以,故選:A.2、C【解析】由已知直接利用等差數(shù)列的性質(zhì)求解【詳解】在等差數(shù)列{an}中,由a1+a2+a3=3,得3a2=3,即a2=1,又a5=9,∴a8=2a5-a2=18-1=17故選C【點睛】本題考查等差數(shù)列的通項公式,考查等差數(shù)列的性質(zhì),是基礎(chǔ)題3、A【解析】分情況討論當(dāng)直線AB的斜率不存在時,可求面積,檢驗是否滿足條件,當(dāng)直線AB的斜率存在時,可設(shè)直線AB的方程y=kx,聯(lián)立橢圓方程,可求△ABF2的面積為S=2代入可求k【詳解】由橢圓=1,則焦點分別為F1(-5,0),F(xiàn)2(5,0),不妨取F(5,0)①當(dāng)直線AB的斜率不存在時,直線AB的方程為x=0,此時AB=4,=AB?5=×5=10,不符合題意;②可設(shè)直線AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面積為S=2=2××5×=20,∴k=±故選:A4、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設(shè)法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.5、D【解析】設(shè),AB的中點,由中點坐標(biāo)公式求得,代入圓C1:得點點M的軌跡方程,再根據(jù)兩圓的位置關(guān)系建立不等式,代入,求解即可得點B的橫坐標(biāo)的取值范圍.【詳解】解:設(shè),AB的中點,則,所以,又因為端點A在圓C1:上運動,所以,即,因為曲線C2與圓C1有兩個公共點,所以,又因B在直線l:y=-x+5上,所以,所以,整理得,即,解得,所以點B的橫坐標(biāo)的取值范圍是,故選:D.6、D【解析】由數(shù)列的遞推公式依次去求,直到求出即可.【詳解】由,可得,,,故選:D.7、B【解析】直接利用正態(tài)分布的應(yīng)用和密度曲線的對稱性的應(yīng)用求出結(jié)果【詳解】根據(jù)隨機變量服從正態(tài)分布,所以密度曲線關(guān)于直線對稱,由于,所以,所以,則,所以故選:B.【點睛】本題考查的知識要點:正態(tài)分布的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題8、A【解析】利用正態(tài)分布的對稱性和概率的性質(zhì)即可【詳解】由,且則有:根據(jù)正態(tài)分布的對稱性可知:故選:A9、A【解析】圓心為,半徑為2,圓心到直線的距離為,解不等式得k的取值范圍考點:直線與圓相交的弦長問題10、B【解析】直接利用不等式的基本性質(zhì)判斷.【詳解】①因為,則,根據(jù)不等式性質(zhì)得,故正確;②當(dāng)時,,而,故錯誤;③因為,所以,即,故正確;④當(dāng)時,,故錯誤;故選:B11、D【解析】的否定是,的否定是,的否定是.故選D【考點】全稱命題與特稱命題的否定【方法點睛】全稱命題的否定是特稱命題,特稱命題的否定是全稱命題.對含有存在(全稱)量詞的命題進行否定需要兩步操作:①將存在(全稱)量詞改成全稱(存在)量詞;②將結(jié)論加以否定12、A【解析】將直線化為,結(jié)合已知條件即可判斷不經(jīng)過的象限.【詳解】由題設(shè),直線可寫成,又,,∴,,故直線過二、三、四象限,不過第一象限.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、34【解析】根據(jù)每行數(shù)字之和相等,四行數(shù)字之和剛好等于1到16之和可得.【詳解】4階幻方中,4行數(shù)字之和,得.故答案為:3414、【解析】由題意在四面體中兩兩垂直,將該四面體補成長方體,則長方體與四面體的外接球相同,從而可求解.【詳解】將直角,,,分別沿DE,EF,DF折起,使得A,B,C三點重合于點P,所以在四面體中兩兩垂直,將該四面體補成長方體,如圖.則長方體與四面體的外接球相同.長方體的外接球在其對角線的中點處.由題意可得,則長方體的外接球的半徑為所以四面體的外接球表面積為故答案為:15、平行【解析】根據(jù)題意得到,得出,即可得到平面與的位置關(guān)系.【詳解】由題意,平面的一個法向量分別為,,可得,所以,所以,即平面與的位置關(guān)系為平行.故答案為:平行16、①.②.l【解析】根據(jù)雙曲線的定義得到動點的軌跡方程,從而求出到坐標(biāo)原點的距離的最小值;【詳解】解:因為,所以動點P的軌跡為以A,B為焦點,實軸長為2的雙曲線的下支.因為,,所以,,,所以動點P的軌跡方程為故P到坐標(biāo)原點的距離的最小值為故答案為:;;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由題意先證明平面PBC,然后由線面平行的性質(zhì)定理可證明.(2)由平面平面ABC,取BC中點O,則平面ABC,可得,由條件可得,以O(shè)坐標(biāo)原點,分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求解即可.【小問1詳解】因為M,N分別為AB,AP的中點,所以,又平面PBC,所以平面PBC,因為平面平面,所以【小問2詳解】因為平面平面ABC,取BC中點O,連接PO,AO,因為是等邊三角形,所以,所以平面ABC,故,又因,所以,以O(shè)為坐標(biāo)原點,分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,可得:,,,,,所以,,,設(shè)平面PAC的法向量為,則,則,令,得,,所以,所以直線PB與平面PAC所成角的正弦值為18、答案見解析【解析】(1)根據(jù)題設(shè)條件可得關(guān)于基本量的方程組,求解后可得的通項公式.(2)利用公式法可求數(shù)列的前項和.【詳解】解:選擇條件①和條件②(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴,.(2)設(shè)等比數(shù)列的公比為,,∴解得,.設(shè)數(shù)列的前項和為,∴.選擇條件①和條件③:(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴.(2),設(shè)等比數(shù)列的公比為,.∴,解得,.設(shè)數(shù)列的前項和為,∴.選擇條件②和條件③:(1)設(shè)等比數(shù)列的公比為,,∴,解得,,.設(shè)等差數(shù)列的公差為,∴,又,故.∴.(2)設(shè)數(shù)列的前項和為,由(1)可知.【點睛】方法點睛:等差數(shù)列或等比數(shù)列的處理有兩類基本方法:(1)利用基本量即把數(shù)學(xué)問題轉(zhuǎn)化為關(guān)于基本量的方程或方程組,再運用基本量解決與數(shù)列相關(guān)的問題;(2)利用數(shù)列的性質(zhì)求解即通過觀察下標(biāo)的特征和數(shù)列和式的特征選擇合適的數(shù)列性質(zhì)處理數(shù)學(xué)問題19、(1)(2)【解析】(1)先求得的中點,由此求得邊AC上的中線所在直線方程.(2)結(jié)合點到直線距離公式求得的面積.【小問1詳解】的中點為,所以邊AC上的中線所在直線方程為.【小問2詳解】直線的方程為,到直線的距離為,,所以.20、(1)時,在遞增,時,在遞減,在遞增(2)【解析】(1)求出函數(shù)導(dǎo)數(shù),分和兩種情況討論可得單調(diào)性;(2)根據(jù)導(dǎo)數(shù)可得有兩個極值點等價于有兩不等實根,則可得出,進而得出,可得恒成立,等價于,構(gòu)造函數(shù)求出最小值即可.【小問1詳解】的定義域是,,①時,,則,在遞增;②時,令,解得,令,解得,故在遞減,在遞增.綜上,時,在遞增時,在遞減,在遞增【小問2詳解】,定義域是,有2個極值點,,即,則有2個不相等實數(shù)根,,∴,,解得,且,,從而,由不等式恒成立,得恒成立,令,當(dāng)時,恒成立,故函數(shù)在上單調(diào)遞減,∴,故實數(shù)m的取值范圍是【點睛】關(guān)鍵點睛:本題考查利用導(dǎo)數(shù)解決不等式的恒成立問題,解題的關(guān)鍵是將有兩個極值點等價于有兩不等實根,以此求出,再將不等式恒成立轉(zhuǎn)化為求的最小值.21、(1)0.05,40;(2)【解析】(1)因為由頻率分布直方圖可得共五組的頻率和為1所以可得一個關(guān)于的等式,即可求出的值.再根據(jù)已知有4名學(xué)生的成績在9米到11米之間,可以求出本次參加“擲鉛球”項目測試的人數(shù).本小題要根據(jù)所給的圖表及直方圖作答,頻率的計算易漏乘以組距.(2)因為若此次測試成績最好的共有4名同學(xué).成績最差的共有2名同學(xué).所以從6名同學(xué)中抽取2名同學(xué)共有15中情況,其中兩人在同組情況由8中.所以可以計算出所求的概率.試題解析:(Ⅰ)由題意可知解得所以此次測試總?cè)藬?shù)為答:此次參加“擲鉛球”的項目測試的人數(shù)為40人(Ⅱ)設(shè)從此次測試成績最好和最差的兩組中隨機抽取2名學(xué)生自不同組的事件為A:由已知,測試成績在有2人,記為;在有4人,記為.從這6人中隨機抽取2人有,共15種情況事件A包括共8種情況.所以答:隨機抽取的2名學(xué)生自不同組的概率為考點:1.頻率分布直方圖.2.概率問題.3.列舉分類的思想.22、(1)關(guān)(2)(3)【解析】(1)由題意,可判斷時,,當(dāng),所以可判斷出最多只能過關(guān);(2)記一次拋擲所出現(xiàn)的點數(shù)之和大于為事件,兩次拋擲所出現(xiàn)的點數(shù)之和大于為事件,得基本事件的總數(shù)以及滿足題意的基本事件的個數(shù),計算出,,從而根據(jù)概率相乘求解得連過前兩關(guān)的概率;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論