版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省宜春市宜春中學(xué)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出如下四個命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④2.已知向量,則下列結(jié)論正確的是()A.B.C.D.3.拋物線準線方程為()A. B.C. D.4.“”是“方程為雙曲線方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.設(shè)函數(shù)在R上可導(dǎo),則()A. B.C. D.以上都不對6.已知圓和圓恰有三條公共切線,則的最小值為()A.6 B.36C.10 D.7.數(shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線.已知的頂點,,若其歐拉線的方程為,則頂點的坐標為()A. B.C. D.8.雙曲線的光學(xué)性質(zhì)為:如圖①,從雙曲線右焦點發(fā)出的光線經(jīng)雙曲線鏡面反射,反射光線的反向延長線經(jīng)過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學(xué)性質(zhì).某“雙曲線新聞燈”的軸截面是雙曲線的一部分,如圖②,其方程為,為其左、右焦點,若從右焦點發(fā)出的光線經(jīng)雙曲線上的點和點反射后,滿足,,則該雙曲線的離心率為()A. B.C. D.9.已知直線與x軸,y軸分別交于A,B兩點,且直線l與圓相切,則的面積的最小值為()A.1 B.2C.3 D.410.在下列函數(shù)中,最小值為2的是()A. B.C. D.11.如圖,正四棱柱是由四個棱長為1的小正方體組成的,是它的一條側(cè)棱,是它的上底面上其余的八個點,則集合的元素個數(shù)()A.1 B.2C.4 D.812.甲烷是一種有機化合物,分子式為,其在自然界中分布很廣,是天然氣、沼氣的主要成分.如圖所示的為甲烷的分子結(jié)構(gòu)模型,已知任意兩個氫原子之間的距離(H-H鍵長)相等,碳原子到四個氫原子的距離(C-H鍵長)均相等,任意兩個H-C-H鍵之間的夾角為(鍵角)均相等,且它的余弦值為,即,若,則以這四個氫原子為頂點的四面體的體積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.與直線和直線的距離相等的直線方程為______14.曲線的一條切線的斜率為,該切線的方程為________.15.不等式的解集是________16.橢圓的長軸長為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,第1個圖形需要4根火柴,第2個圖形需要7根火柴,,設(shè)第n個圖形需要根火柴(1)試寫出,并求;(2)記前n個圖形所需的火柴總根數(shù)為,設(shè),求數(shù)列的前n項和18.(12分)已知在△中,角A,B,C的對邊分別是a,b,c,且.(1)求角C的大??;(2)若,求△的面積S的最大值.19.(12分)如圖1,在△MBC中,,A,D分別為棱BM,MC的中點,將△MAD沿AD折起到△PAD的位置,使,如圖2,連結(jié)PB,PC,BD(1)求證:平面PAD⊥平面ABCD;(2)若E為PC中點,求直線DE與平面PBD所成角的正弦值20.(12分)設(shè)橢圓的左、右焦點分別為,.點滿足.(1)求橢圓的離心率;(2)設(shè)直線與橢圓相交于,兩點,若直線與圓相交于,兩點,且,求橢圓的方程.21.(12分)已知內(nèi)角A,B,C的對邊分別為a,b,c,且B,A,C成等差數(shù)列.(1)求A的大??;(2)若,且的面積為,求的周長.22.(10分)求下列函數(shù)的導(dǎo)數(shù):(1);(2).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】對選項①,根據(jù)圓一般方程求解即可判斷①錯誤,對選項②,求出橢圓離心率即可判斷②錯誤,對③,求出拋物線漸近線即可判斷③正確,對④,求出雙曲線漸近線方程即可判斷④錯誤。【詳解】對于①選項,,,故①錯誤;對于②選項,由題知,所以,所以離心率,故②錯誤;對于③選項,拋物線化為標準形式得拋物線,故準線方程是,故③正確;對于④選項,雙曲線化為標準形式得,所以,焦點在軸上,故漸近線方程是,故④錯誤.故選:A2、D【解析】由題可知:,,,故選;D3、D【解析】由拋物線的準線方程即可求解【詳解】由拋物線方程得:.所以,拋物線的準線方程為故選D【點睛】本題主要考查了拋物線的準線方程,屬于基礎(chǔ)題4、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”的原則進行判斷即可.【詳解】因方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.5、B【解析】根據(jù)極限的定義計算【詳解】由題意故選:B6、B【解析】由公切線條數(shù)得兩圓外切,由此可得的關(guān)系,從而點在以原點為圓心,4為半徑的圓上,記,由求得的最小值,平方后即得結(jié)論【詳解】圓標準方程為,,半徑為,圓標準方程為,,半徑為,兩圓有三條公切線,則兩圓外切,所以,即,點在以原點為圓心,4為半徑的圓上,記,,所以,所以的最小值為故選:B7、A【解析】設(shè),計算出重心坐標后代入歐拉方程,再求出外心坐標,根據(jù)外心的性質(zhì)列出關(guān)于的方程,最后聯(lián)立解方程即可.【詳解】設(shè),由重心坐標公式得,三角形的重心為,,代入歐拉線方程得:,整理得:①的中點為,,的中垂線方程為,即聯(lián)立,解得的外心為則,整理得:②聯(lián)立①②得:,或,當,時,重合,舍去頂點的坐標是故選:A【點睛】關(guān)鍵點睛:解決本題的關(guān)鍵一是求出外心,二是根據(jù)外心的性質(zhì)列方程.8、C【解析】連接,已知條件為,,設(shè),由雙曲線定義表示出,用已知正切值求出,再由雙曲線定義得,這樣可由勾股定理求出(用表示),然后在中,應(yīng)用勾股定理得出的關(guān)系,求得離心率【詳解】易知共線,共線,如圖,設(shè),,則,由得,,又,所以,,所以,所以,由得,因為,故解得,則,在中,,即,所以故選:C9、A【解析】由直線與圓相切可得,再利用基本不等式即求.【詳解】由已知可得,,因為直線與圓相切,所以,即,因為,當且僅當時取等號,所以,,所以面積的最小值為1.故選:A10、C【解析】結(jié)合基本不等式的知識對選項逐一分析,由此確定正確選項.【詳解】對于A選項,時,為負數(shù),A錯誤.對于B選項,,,,但不存在使成立,所以B錯誤.對于C選項,,當且僅當時等號成立,C正確.對于D選項,,,,但不存在使成立,所以D錯誤.故選:C11、A【解析】用空間直角坐標系看正四棱柱,根據(jù)向量數(shù)量積進行計算即可.【詳解】建立空間直角坐標系,為原點,正四棱柱的三個邊的方向分別為軸、軸和看軸,如右圖示,,設(shè),則AB所以集合,元素個數(shù)為1.故選:A.12、A【解析】利用余弦定理求得,計算出正四面體的高,從而計算出正四面體的體積.【詳解】設(shè),則由余弦定理知:,解得,故該正四面體的棱長均為由正弦定理可知:該正四面體底面外接圓的半徑,高故該正四面體的體積為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)直線方程為,根據(jù)兩平行直線之間距離公式即可求解.【詳解】設(shè)該直線為:,則由兩平行直線之間距離公式得:,故該直線為:;故答案為:.14、【解析】使用導(dǎo)數(shù)運算公式求得切點處的導(dǎo)數(shù)值,并根據(jù)導(dǎo)數(shù)的幾何意義等于切線斜率求得切點的橫坐標,進而得到切點坐標,然后利用點斜式求出切線方程即可.【詳解】的導(dǎo)數(shù)為,設(shè)切點為,可得,解得,即有切點,則切線的方程為,即.故答案為:.【點睛】本題考查導(dǎo)數(shù)的加法運算,導(dǎo)數(shù)的幾何意義,和求切線方程,難度不大,關(guān)鍵是正確的使用導(dǎo)數(shù)運算公式求得切點處的導(dǎo)數(shù)值,15、【解析】先將分式不等式化為一元二次不等式,再根據(jù)一元二次不等式的解法解不等式即可【詳解】∵,∴(x﹣2)(x+4)<0,∴-4<x<2,即不等式的解集為{x|-4<x<2}故答案為.【點睛】本題主要考查分式不等式及一元二次不等式的解法,比較基礎(chǔ)16、4【解析】把橢圓方程化成標準形式直接計算作答.【詳解】橢圓方程化為:,令橢圓長半軸長為a,則,解得,所以橢圓的長軸長為4.故答案為:4三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)根據(jù)題設(shè)找到規(guī)律寫出,由等差數(shù)列的定義求.(2)由等差數(shù)列前n項和求,再利用裂項相消法求.【小問1詳解】由題意知:,,,,可得每增加一個正方形,火柴增加3根,即,所以數(shù)列是以4為首項,以3為公差的等差數(shù)列,則.【小問2詳解】由題意可知,,所以,則,所以,,即18、(1);(2).【解析】(1)由正弦定理、和角正弦公式及三角形內(nèi)角的性質(zhì)可得,進而可得C的大??;(2)由余弦定理可得,根據(jù)基本不等式可得,由三角形面積公式求面積的最大值,注意等號成立條件.【小問1詳解】由正弦定理知:,∴,又,∴,則,故.【小問2詳解】由,又,則,∴,當且僅當時等號成立,∴△的面積S的最大值為.19、(1)證明見解析;(2).【解析】(1)推導(dǎo)出,,利用線面垂直的判定定理可得平面,再利用面面垂直的判定定理即可證明;(2)以A為坐標原點,建立如圖空間直角坐標系,利用向量法即可求出直線DE與平面所成角的正弦值.【小問1詳解】由題意知,因為點A、D分別為MB、MC中點,所以,又,所以,所以.因為,所以,又,所以平面,又平面,所以平面平面;【小問2詳解】因為,,,所以兩兩垂直,以A為坐標原點,建立如圖空間直角坐標系,,則,設(shè)平面的一個法向量為,則,令,得,所以,設(shè)直線DE與平面所成角為,則,所以直線DE與平面所成角的正弦值為.20、(1);(2)【解析】(1)由及兩點間距離公式可建立等式,消去b,即可求解出,主要兩個根的的要舍去;(2)聯(lián)立直線和橢圓的方程,利用弦長公式求得,再利用幾何關(guān)系求得,代入,可解得c,從而得到橢圓的方程.【詳解】(1)設(shè),,因為,所以,整理得,得(舍),或,所以;(2)由(1)知,,可得橢圓方程為,直線的方程為,A,B兩點的坐標滿足方程組為,消去y并整理,得,解得:,,得方程組的解和,不妨設(shè):,,所以,于是,圓心到直線的距離為,因為,所以,整理得:,得(舍),或,所以橢圓方程為:.【點睛】關(guān)鍵點點睛:本題考查求橢圓的離心率解題關(guān)鍵是找到關(guān)于a,b,c的等量關(guān)系,第二問的關(guān)鍵是聯(lián)立直線與橢圓方程求出交點坐標,利用距離公式建立等量關(guān)系,求出c是求出橢圓方程的關(guān)鍵.21、(1)(2)【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《保險中介》課件
- 《修改棘皮》課件
- 突發(fā)性聾的健康宣教
- 輸尿管癌的臨床護理
- 繼發(fā)性痛風的健康宣教
- 單純性外陰陰道念珠菌病的健康宣教
- 孕期肛門疼痛的健康宣教
- 《迎駕貢酒團購培訓(xùn)》課件
- 風濕病性貧血的健康宣教
- 幼年型皮肌炎的臨床護理
- (T8聯(lián)考)2025屆高三部分重點中學(xué)12月聯(lián)合測評語文試卷(含答案解析)
- 2024年考研(英語一)真題及參考答案
- 2023年軍隊文職統(tǒng)一考試(公共科目)試卷(含解析)
- 倉庫負責人年終總結(jié)
- 地質(zhì)災(zāi)害治理施工組織設(shè)計方案
- 安裝工程計量與計價課件:安裝工程定額計價體系
- 心肺復(fù)蘇術(shù)課件2024新版
- 中國校服產(chǎn)業(yè)挑戰(zhàn)與機遇分析報告 2024
- 遼寧省大連市2023-2024學(xué)年高三上學(xué)期雙基測試(期末考試) 地理 含答案
- 2024年4s店提前還款協(xié)議書模板
- 部編版一年級上冊語文期末試題帶答案
評論
0/150
提交評論