版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆福建省龍巖市連城一中數學高二上期末學業(yè)質量監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.若動點在方程所表示的曲線上,則以下結論正確的是()①曲線關于原點成中心對稱圖形;②動點到坐標原點的距離的取值范圍為;③動點與點的最小距離為;④動點與點的連線斜率的取值范圍是.A.①② B.①②③C.③④ D.①②④3.已知,且,則的最大值為()A. B.C. D.4.已知空間向量,,且,則的值為()A. B.C. D.5.2021年是中國共產黨百年華誕,3月24日,中宣部發(fā)布中國共產黨成立100周年慶?;顒訕俗R(圖1),標識由黨徽、數字“100”“1921”“2021”和56根光芒線組成,生動展現中國共產黨團結帶領中國人民不忘初心、牢記使命、艱苦奮斗的百年光輝歷程.其中“100”的兩個“0”設計為兩個半徑為的相交大圓,分別內含一個半徑為1的同心小圓,且同心小圓均與另一個大圓外切(圖2).已知,在兩大圓的區(qū)域內隨機取一點,則該點取自兩大圓公共部分的概率為()A. B.C. D.6.拋物線有如下光學性質:由其焦點射出的光線經拋物線反射后,沿平行于拋物線對稱軸的方向射出;反之,平行于拋物線對稱軸的入射光線經拋物線反射后必過拋物線的焦點.已知拋物線,O為坐標原點,一條平行于x軸的光線從點射入,經過C上的點A反射后,再經C上另一點B反射后,沿直線射出,經過點N.下列說法正確的是()A.若,則 B.若,則平分C.若,則 D.若,延長AO交直線于點D,則D,B,N三點共線7.拋物線的焦點坐標是()A. B.C. D.8.三等分角是“古希臘三大幾何問題”之一,數學家帕普斯巧妙地利用圓弧和雙曲線解決了這個問題.如圖,在圓D中,為其一條弦,,C,O是弦的兩個三等分點,以A為左焦點,B,C為頂點作雙曲線T.設雙曲線T與弧的交點為E,則.若T的方程為,則圓D的半徑為()A. B.1C.2 D.9.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.10.新冠肺炎疫情的發(fā)生,我國的三大產業(yè)均受到不同程度的影響,其中第三產業(yè)中的各個行業(yè)都面臨著很大的營收壓力.2020年7月國家統(tǒng)計局發(fā)布了我國上半年國內經濟數據,如圖所示,圖1為國內三大產業(yè)比重,圖2為第三產業(yè)中各行業(yè)比重下列關于我國上半年經濟數據的說法正確的是()A.第一產業(yè)的生產總值與第三產業(yè)中“其他服務業(yè)”的生產總值基本持平B.第一產業(yè)的生產總值超過第三產業(yè)中“金融業(yè)”的生產總值C.若“住宿和餐飲業(yè)”生產總值為7500億元,則“房地產”生產總值為22500億元D.若“金融業(yè)”生產總值為41040億元,則第二產業(yè)生產總值為166500億元11.在中,,則邊的長等于()A. B.C. D.212.已知拋物線,過拋物線的焦點作軸的垂線,與拋物線交于、兩點,點的坐標為,且為直角三角形,則以直線為準線的拋物線的標準方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,則以AB為直徑的圓的方程為___________.14.若直線的方向向量為,平面的一個法向量為,則直線與平面所成角的正弦值為______.15.設、為正數,若,則的最小值是______,此時______.16.已知數列的前n項和為,則取得最大值時n的值為__________________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.18.(12分)如圖,OP為圓錐的高,AB為底面圓O的直徑,C為圓O上一點,并且,E為劣弧上的一點,且,.(1)若E為劣弧的中點,求證:平面POE;(2)若E為劣弧的三等分點(靠近點),求平面PEO與平面PEB的夾角的余弦值.19.(12分)已知是邊長為2的正方形,正方形繞旋轉形成一個圓柱;(1)求該圓柱的表面積;(2)正方形繞順時針旋轉至,求異面直線與所成角的大小20.(12分)如圖,幾何體中,平面,,,,E是中點,二面角的平面角為.(1)求證:平面;(2)求直線與平面所成角的正弦值.21.(12分)已知橢圓的離心率為,且過點.(1)求橢圓的方程;(2)若,分別為橢圓的上,下頂點,過點且斜率為的直線交橢圓于另一點(異于橢圓的右頂點),交軸于點,直線與直線相交于點.求證:直線的斜率為定值.22.(10分)如圖,點是曲線上的動點(點在軸左側),以點為頂點作等腰梯形,使點在此曲線上,點在軸上.設,等腰梯的面積為.(1)寫出函數的解析式,并求出函數的定義域;(2)當為何值時,等腰梯形的面積最大?求出最大面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用函數在上單調遞減即可求解.【詳解】解:因為函數在上單調遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.2、A【解析】將原方程等價變形為,將方程中的換為,換為,方程不變,可判斷①;利用兩點間的距離公式,結合二次函數知識可判斷②和③;取特殊點可判斷④.【詳解】因為等價于,即,對于①,將方程中的換為,換為,方程不變,所以曲線關于原點成中心對稱圖形,故①正確;對于②,設,則動點到坐標原點的距離,因為,所以,故②正確;對于③,設,動點與點的距離為,因為函數在上遞減,所以當時,函數取得最小值,從而取得最小值,故③不正確;對于④,當時,因為,所以,故④不正確.綜上所述:結論正確的是:①②.故選:A3、A【解析】由基本不等式直接求解即可得到結果.【詳解】由基本不等式知;(當且僅當時取等號),的最大值為.故選:A.4、B【解析】根據向量垂直得,即可求出的值.【詳解】.故選:B.5、B【解析】求出兩圓相交公共部分兩個弓形面積,結合兩圓面積可得概率【詳解】如圖,是兩圓心,是兩圓交點坐標,四邊形邊長均為,又,所以,所以,四邊形是正方形,,弓形面積為,兩個弓形面積為,兩圓涉及部分面積為所以所求概率為故選:B6、D【解析】根據求出焦點為、點坐標,可得直線的方程與拋物線方程聯(lián)立得點坐標,由兩點間的距離公式求出可判斷AC;時可得,.由可判斷B;求出點坐標可判斷D.【詳解】如圖,若,則,C的焦點為,因為,所以,直線的方程為,整理得,與拋物線方程聯(lián)立得,解得或,所以,所以,選項A錯誤;時,因為,所以.又,,所以不平分,選項B不正確;若,則,C的焦點為,因為,所以,直線的方程為,所以,所以,選項C錯誤;若,則,C的焦點為,因為,所以,直線的方程為,所以,直線的方程為,延長交直線于點D,所以則,所以D,B,N三點共線,選項D正確;故選:D.7、C【解析】化為標準方程,利用焦點坐標公式求解.【詳解】拋物線的標準方程為,所以拋物線的焦點在軸上,且,所以,所以拋物線的焦點坐標為.故選:C8、C【解析】由題設寫出雙曲線的方程,對比系數,求出即可獲解【詳解】由題知所以雙曲線的方程為又由題設的方程為,所以,即設AB的中點為,則由.所以,即圓的半徑為2故選:C9、A【解析】結合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A10、D【解析】根據扇形圖及柱形圖中的各產業(yè)與各行業(yè)所占比重,得到第三產業(yè)中“其他服務業(yè)”及“金融業(yè)”的生產總值占總生產總值的比重,進而比較出AB選項,利用“住宿和餐飲業(yè)”生產總值和“房地產”生產總值的比值,求出“房地產”生產總值,判斷出C選項,利用第三產業(yè)中“金融業(yè)”的生產總值與第二產業(yè)的生產總值比值,求出第二產業(yè)生產總值,判斷D選項.【詳解】A選項,第三產業(yè)中“其他服務業(yè)”的生產總值占總生產總值的,因為,所以第三產業(yè)中“其他服務業(yè)”的生產總值明顯高于第一產業(yè)的生產總值,A錯誤;B選項,第三產業(yè)中“金融業(yè)”的生產總值占總生產總值的,因為,故第一產業(yè)的生產總值少于第三產業(yè)中“金融業(yè)”的生產總值,B錯誤;“住宿和餐飲業(yè)”生產總值和“房地產”生產總值的比值為,若“住宿和餐飲業(yè)”生產總值為7500億元,則“房地產”生產總值為億元,故C錯誤;第三產業(yè)中“金融業(yè)”的生產總值占總生產總值的,與第二產業(yè)的生產總值比值為,若“金融業(yè)”生產總值為41040億元,則第二產業(yè)生產總值為166500億元,D正確.故選:D11、A【解析】由余弦定理求解【詳解】由余弦定理,得,即,解得(負值舍去)故選:A12、B【解析】設點位于第一象限,求得直線的方程,可得出點的坐標,由拋物線的對稱性可得出,進而可得出直線的斜率為,利用斜率公式求得的值,由此可得出以直線為準線的拋物線的標準方程.【詳解】設點位于第一象限,直線的方程為,聯(lián)立,可得,所以,點.為等腰直角三角形,由拋物線的對稱性可得出,則直線的斜率為,即,解得.因此,以直線為準線的拋物線的標準方程為.故選:B.【點睛】本題考查拋物線標準方程的求解,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求圓心及半徑即可.【詳解】由已知可得圓心坐標為,半徑為,所以圓的方程為:.故答案為:14、【解析】根據空間向量夾角公式進行求解即可.【詳解】設與的夾角為,直線與平面所成角為,所以,故答案為:15、①.4②.【解析】巧用“1”改變目標式子的結果,借助均值不等式求最值即可.【詳解】,當且僅當即,時等號成立.故答案為,【點睛】本題考查最值的求法,注意運用“1”的代換法和基本不等式,考查運算能力,屬于中檔題16、①.13②.##3.4【解析】由題可得利用函數的單調性可得取得最大值時n的值,然后利用,即求.【詳解】∵,∴當時,單調遞減且,當時,單調遞減且,∴時,取得最大值,∴.故答案為:13;.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設,以為坐標原點建立空間直角坐標系,求出平面的法向量,平面的法向量,利用空間向量的數量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點,在中,、分別為和中點,,又因平面平面,面,面,平面【小問2詳解】解:設,以為坐標原點如圖建系,則,,所以、,設平面的法向量則,故可取設平面的法向量,則,故可取,因為面與面的夾角余弦值為,所以,即,解得,18、(1)證明見解析(2)【解析】(1)推導出平面,,,由此能證明平面(2)推導出,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值【小問1詳解】證明:為圓錐的高,平面,又平面,,為劣弧的中點,,,平面,平面【小問2詳解】解:解:為劣弧的三等分點(靠近點,為底面圓的直徑,為圓上一點,并且,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,,0,,,0,,,,,,0,,,3,,0,,,,,,,,,3,設平面的法向量,,,則,取,得,,,設平面的法向量,,,則,取,得,1,,設二面角的平面角為,則,二面角的余弦值為19、(1)(2)【解析】(1)利用表面積公式直接計算得到答案.(2)連接和,,故即為異面直線與所成角,證明,根據長度關系得到答案.【小問1詳解】【小問2詳解】如圖所示:連接和,,故即為異面直線與所成角,,,,故平面,平面,故,,故,直角中,,,,故異面直線與所成角的大小為.20、(1)證明見解答;(2)【解析】(1)平面,可得,是二面角的平面角,由余弦定理可得,,從而可證平面;(2)以為坐標原點,,,所在直線為坐標軸建立如圖所示的空間直角坐標系,求平面的一個法向量與的方向向量,利用向量法可求直線與平面所成角的正弦值【小問1詳解】證明:取中點,又是中點,,,平面,平面,,平面,是二面角的平面角,,又,,在中,由余弦定理有,可得,又是中點,,平面,,又,平面,平面.【小問2詳解】解:以為坐標原點,,,所在直線為坐標軸建立如圖所示的空間直角坐標系,則,0,,,1,,,0,,,1,,1,,,0,,,1,設平面的一個法向量為,,,則,令,則,,平面的一個法向量為,,,設直線與平面所成角為,則,直線與平面所成角的正弦值為21、(1);(2)證明見解析.【解析】(1)根據條件求出,即可寫出橢圓方程;(2)設直線的方程為,聯(lián)立直線與橢圓,可表示出坐標,繼而得出直線的方程,令可得的坐標,即可求出直線的斜率并得出定值.【詳解】(1)設橢圓的焦距為,則①,②,又③,由①②③解得,,,所以橢圓的標準方程為.(2)證明:易得,,直線的方程為,因為直線不過點,所以,由,得,所以,從
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物醫(yī)藥行業(yè)投資趨勢與回報分析
- 現代企業(yè)遠程管理與跨地域團隊建設策略
- 環(huán)保產業(yè)中綠能技術的創(chuàng)新應用與挑戰(zhàn)
- 機房環(huán)境控制與空調系統(tǒng)運維管理
- 現代企業(yè)創(chuàng)新文化構建與管理模式調整
- 2024-2025學年高中地理 第1章 人口的增長、遷移與合理容量 第3節(jié) 環(huán)境承載力與人口合理容量說課稿 中圖版必修2
- 現代建筑設計趨勢與創(chuàng)新實踐
- 環(huán)境設計在體育場館的應用案例
- 現代商業(yè)生態(tài)圈中的創(chuàng)新與投資機遇
- 現代企業(yè)管理中的決策創(chuàng)新
- 【重慶長安汽車公司績效管理現狀、問題及優(yōu)化對策(7600字論文)】
- 計算機網絡畢業(yè)論文3000字
- 2023年大學物理化學實驗報告化學電池溫度系數的測定
- 農村公共基礎知識
- 腦出血的護理課件腦出血護理查房PPT
- 煤礦機電運輸安全培訓課件
- 扣繳個人所得稅報告表-(Excel版)
- Unit+4+History+and+Traditions單元整體教學設計課件 高中英語人教版(2019)必修第二冊單元整體教學設計
- 提高預埋螺栓安裝一次驗收合格率五項qc2012地腳
- 2023年全國自學考試00054管理學原理試題答案
- 六年級譯林版小學英語閱讀理解訓練經典題目(附答案)
評論
0/150
提交評論