2025屆福建省龍巖市連城一中數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2025屆福建省龍巖市連城一中數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2025屆福建省龍巖市連城一中數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2025屆福建省龍巖市連城一中數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2025屆福建省龍巖市連城一中數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆福建省龍巖市連城一中數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.若動點在方程所表示的曲線上,則以下結(jié)論正確的是()①曲線關(guān)于原點成中心對稱圖形;②動點到坐標(biāo)原點的距離的取值范圍為;③動點與點的最小距離為;④動點與點的連線斜率的取值范圍是.A.①② B.①②③C.③④ D.①②④3.已知,且,則的最大值為()A. B.C. D.4.已知空間向量,,且,則的值為()A. B.C. D.5.2021年是中國共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國共產(chǎn)黨成立100周年慶?;顒訕?biāo)識(圖1),標(biāo)識由黨徽、數(shù)字“100”“1921”“2021”和56根光芒線組成,生動展現(xiàn)中國共產(chǎn)黨團(tuán)結(jié)帶領(lǐng)中國人民不忘初心、牢記使命、艱苦奮斗的百年光輝歷程.其中“100”的兩個“0”設(shè)計為兩個半徑為的相交大圓,分別內(nèi)含一個半徑為1的同心小圓,且同心小圓均與另一個大圓外切(圖2).已知,在兩大圓的區(qū)域內(nèi)隨機取一點,則該點取自兩大圓公共部分的概率為()A. B.C. D.6.拋物線有如下光學(xué)性質(zhì):由其焦點射出的光線經(jīng)拋物線反射后,沿平行于拋物線對稱軸的方向射出;反之,平行于拋物線對稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點.已知拋物線,O為坐標(biāo)原點,一條平行于x軸的光線從點射入,經(jīng)過C上的點A反射后,再經(jīng)C上另一點B反射后,沿直線射出,經(jīng)過點N.下列說法正確的是()A.若,則 B.若,則平分C.若,則 D.若,延長AO交直線于點D,則D,B,N三點共線7.拋物線的焦點坐標(biāo)是()A. B.C. D.8.三等分角是“古希臘三大幾何問題”之一,數(shù)學(xué)家帕普斯巧妙地利用圓弧和雙曲線解決了這個問題.如圖,在圓D中,為其一條弦,,C,O是弦的兩個三等分點,以A為左焦點,B,C為頂點作雙曲線T.設(shè)雙曲線T與弧的交點為E,則.若T的方程為,則圓D的半徑為()A. B.1C.2 D.9.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.10.新冠肺炎疫情的發(fā)生,我國的三大產(chǎn)業(yè)均受到不同程度的影響,其中第三產(chǎn)業(yè)中的各個行業(yè)都面臨著很大的營收壓力.2020年7月國家統(tǒng)計局發(fā)布了我國上半年國內(nèi)經(jīng)濟(jì)數(shù)據(jù),如圖所示,圖1為國內(nèi)三大產(chǎn)業(yè)比重,圖2為第三產(chǎn)業(yè)中各行業(yè)比重下列關(guān)于我國上半年經(jīng)濟(jì)數(shù)據(jù)的說法正確的是()A.第一產(chǎn)業(yè)的生產(chǎn)總值與第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”的生產(chǎn)總值基本持平B.第一產(chǎn)業(yè)的生產(chǎn)總值超過第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值C.若“住宿和餐飲業(yè)”生產(chǎn)總值為7500億元,則“房地產(chǎn)”生產(chǎn)總值為22500億元D.若“金融業(yè)”生產(chǎn)總值為41040億元,則第二產(chǎn)業(yè)生產(chǎn)總值為166500億元11.在中,,則邊的長等于()A. B.C. D.212.已知拋物線,過拋物線的焦點作軸的垂線,與拋物線交于、兩點,點的坐標(biāo)為,且為直角三角形,則以直線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,則以AB為直徑的圓的方程為___________.14.若直線的方向向量為,平面的一個法向量為,則直線與平面所成角的正弦值為______.15.設(shè)、為正數(shù),若,則的最小值是______,此時______.16.已知數(shù)列的前n項和為,則取得最大值時n的值為__________________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.18.(12分)如圖,OP為圓錐的高,AB為底面圓O的直徑,C為圓O上一點,并且,E為劣弧上的一點,且,.(1)若E為劣弧的中點,求證:平面POE;(2)若E為劣弧的三等分點(靠近點),求平面PEO與平面PEB的夾角的余弦值.19.(12分)已知是邊長為2的正方形,正方形繞旋轉(zhuǎn)形成一個圓柱;(1)求該圓柱的表面積;(2)正方形繞順時針旋轉(zhuǎn)至,求異面直線與所成角的大小20.(12分)如圖,幾何體中,平面,,,,E是中點,二面角的平面角為.(1)求證:平面;(2)求直線與平面所成角的正弦值.21.(12分)已知橢圓的離心率為,且過點.(1)求橢圓的方程;(2)若,分別為橢圓的上,下頂點,過點且斜率為的直線交橢圓于另一點(異于橢圓的右頂點),交軸于點,直線與直線相交于點.求證:直線的斜率為定值.22.(10分)如圖,點是曲線上的動點(點在軸左側(cè)),以點為頂點作等腰梯形,使點在此曲線上,點在軸上.設(shè),等腰梯的面積為.(1)寫出函數(shù)的解析式,并求出函數(shù)的定義域;(2)當(dāng)為何值時,等腰梯形的面積最大?求出最大面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用函數(shù)在上單調(diào)遞減即可求解.【詳解】解:因為函數(shù)在上單調(diào)遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.2、A【解析】將原方程等價變形為,將方程中的換為,換為,方程不變,可判斷①;利用兩點間的距離公式,結(jié)合二次函數(shù)知識可判斷②和③;取特殊點可判斷④.【詳解】因為等價于,即,對于①,將方程中的換為,換為,方程不變,所以曲線關(guān)于原點成中心對稱圖形,故①正確;對于②,設(shè),則動點到坐標(biāo)原點的距離,因為,所以,故②正確;對于③,設(shè),動點與點的距離為,因為函數(shù)在上遞減,所以當(dāng)時,函數(shù)取得最小值,從而取得最小值,故③不正確;對于④,當(dāng)時,因為,所以,故④不正確.綜上所述:結(jié)論正確的是:①②.故選:A3、A【解析】由基本不等式直接求解即可得到結(jié)果.【詳解】由基本不等式知;(當(dāng)且僅當(dāng)時取等號),的最大值為.故選:A.4、B【解析】根據(jù)向量垂直得,即可求出的值.【詳解】.故選:B.5、B【解析】求出兩圓相交公共部分兩個弓形面積,結(jié)合兩圓面積可得概率【詳解】如圖,是兩圓心,是兩圓交點坐標(biāo),四邊形邊長均為,又,所以,所以,四邊形是正方形,,弓形面積為,兩個弓形面積為,兩圓涉及部分面積為所以所求概率為故選:B6、D【解析】根據(jù)求出焦點為、點坐標(biāo),可得直線的方程與拋物線方程聯(lián)立得點坐標(biāo),由兩點間的距離公式求出可判斷AC;時可得,.由可判斷B;求出點坐標(biāo)可判斷D.【詳解】如圖,若,則,C的焦點為,因為,所以,直線的方程為,整理得,與拋物線方程聯(lián)立得,解得或,所以,所以,選項A錯誤;時,因為,所以.又,,所以不平分,選項B不正確;若,則,C的焦點為,因為,所以,直線的方程為,所以,所以,選項C錯誤;若,則,C的焦點為,因為,所以,直線的方程為,所以,直線的方程為,延長交直線于點D,所以則,所以D,B,N三點共線,選項D正確;故選:D.7、C【解析】化為標(biāo)準(zhǔn)方程,利用焦點坐標(biāo)公式求解.【詳解】拋物線的標(biāo)準(zhǔn)方程為,所以拋物線的焦點在軸上,且,所以,所以拋物線的焦點坐標(biāo)為.故選:C8、C【解析】由題設(shè)寫出雙曲線的方程,對比系數(shù),求出即可獲解【詳解】由題知所以雙曲線的方程為又由題設(shè)的方程為,所以,即設(shè)AB的中點為,則由.所以,即圓的半徑為2故選:C9、A【解析】結(jié)合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設(shè)左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A10、D【解析】根據(jù)扇形圖及柱形圖中的各產(chǎn)業(yè)與各行業(yè)所占比重,得到第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”及“金融業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的比重,進(jìn)而比較出AB選項,利用“住宿和餐飲業(yè)”生產(chǎn)總值和“房地產(chǎn)”生產(chǎn)總值的比值,求出“房地產(chǎn)”生產(chǎn)總值,判斷出C選項,利用第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值與第二產(chǎn)業(yè)的生產(chǎn)總值比值,求出第二產(chǎn)業(yè)生產(chǎn)總值,判斷D選項.【詳解】A選項,第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的,因為,所以第三產(chǎn)業(yè)中“其他服務(wù)業(yè)”的生產(chǎn)總值明顯高于第一產(chǎn)業(yè)的生產(chǎn)總值,A錯誤;B選項,第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的,因為,故第一產(chǎn)業(yè)的生產(chǎn)總值少于第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值,B錯誤;“住宿和餐飲業(yè)”生產(chǎn)總值和“房地產(chǎn)”生產(chǎn)總值的比值為,若“住宿和餐飲業(yè)”生產(chǎn)總值為7500億元,則“房地產(chǎn)”生產(chǎn)總值為億元,故C錯誤;第三產(chǎn)業(yè)中“金融業(yè)”的生產(chǎn)總值占總生產(chǎn)總值的,與第二產(chǎn)業(yè)的生產(chǎn)總值比值為,若“金融業(yè)”生產(chǎn)總值為41040億元,則第二產(chǎn)業(yè)生產(chǎn)總值為166500億元,D正確.故選:D11、A【解析】由余弦定理求解【詳解】由余弦定理,得,即,解得(負(fù)值舍去)故選:A12、B【解析】設(shè)點位于第一象限,求得直線的方程,可得出點的坐標(biāo),由拋物線的對稱性可得出,進(jìn)而可得出直線的斜率為,利用斜率公式求得的值,由此可得出以直線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程.【詳解】設(shè)點位于第一象限,直線的方程為,聯(lián)立,可得,所以,點.為等腰直角三角形,由拋物線的對稱性可得出,則直線的斜率為,即,解得.因此,以直線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程為.故選:B.【點睛】本題考查拋物線標(biāo)準(zhǔn)方程的求解,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求圓心及半徑即可.【詳解】由已知可得圓心坐標(biāo)為,半徑為,所以圓的方程為:.故答案為:14、【解析】根據(jù)空間向量夾角公式進(jìn)行求解即可.【詳解】設(shè)與的夾角為,直線與平面所成角為,所以,故答案為:15、①.4②.【解析】巧用“1”改變目標(biāo)式子的結(jié)果,借助均值不等式求最值即可.【詳解】,當(dāng)且僅當(dāng)即,時等號成立.故答案為,【點睛】本題考查最值的求法,注意運用“1”的代換法和基本不等式,考查運算能力,屬于中檔題16、①.13②.##3.4【解析】由題可得利用函數(shù)的單調(diào)性可得取得最大值時n的值,然后利用,即求.【詳解】∵,∴當(dāng)時,單調(diào)遞減且,當(dāng)時,單調(diào)遞減且,∴時,取得最大值,∴.故答案為:13;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設(shè),以為坐標(biāo)原點建立空間直角坐標(biāo)系,求出平面的法向量,平面的法向量,利用空間向量的數(shù)量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點,在中,、分別為和中點,,又因平面平面,面,面,平面【小問2詳解】解:設(shè),以為坐標(biāo)原點如圖建系,則,,所以、,設(shè)平面的法向量則,故可取設(shè)平面的法向量,則,故可取,因為面與面的夾角余弦值為,所以,即,解得,18、(1)證明見解析(2)【解析】(1)推導(dǎo)出平面,,,由此能證明平面(2)推導(dǎo)出,,以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值【小問1詳解】證明:為圓錐的高,平面,又平面,,為劣弧的中點,,,平面,平面【小問2詳解】解:解:為劣弧的三等分點(靠近點,為底面圓的直徑,為圓上一點,并且,,以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,,0,,,0,,,,,,0,,,3,,0,,,,,,,,,3,設(shè)平面的法向量,,,則,取,得,,,設(shè)平面的法向量,,,則,取,得,1,,設(shè)二面角的平面角為,則,二面角的余弦值為19、(1)(2)【解析】(1)利用表面積公式直接計算得到答案.(2)連接和,,故即為異面直線與所成角,證明,根據(jù)長度關(guān)系得到答案.【小問1詳解】【小問2詳解】如圖所示:連接和,,故即為異面直線與所成角,,,,故平面,平面,故,,故,直角中,,,,故異面直線與所成角的大小為.20、(1)證明見解答;(2)【解析】(1)平面,可得,是二面角的平面角,由余弦定理可得,,從而可證平面;(2)以為坐標(biāo)原點,,,所在直線為坐標(biāo)軸建立如圖所示的空間直角坐標(biāo)系,求平面的一個法向量與的方向向量,利用向量法可求直線與平面所成角的正弦值【小問1詳解】證明:取中點,又是中點,,,平面,平面,,平面,是二面角的平面角,,又,,在中,由余弦定理有,可得,又是中點,,平面,,又,平面,平面.【小問2詳解】解:以為坐標(biāo)原點,,,所在直線為坐標(biāo)軸建立如圖所示的空間直角坐標(biāo)系,則,0,,,1,,,0,,,1,,1,,,0,,,1,設(shè)平面的一個法向量為,,,則,令,則,,平面的一個法向量為,,,設(shè)直線與平面所成角為,則,直線與平面所成角的正弦值為21、(1);(2)證明見解析.【解析】(1)根據(jù)條件求出,即可寫出橢圓方程;(2)設(shè)直線的方程為,聯(lián)立直線與橢圓,可表示出坐標(biāo),繼而得出直線的方程,令可得的坐標(biāo),即可求出直線的斜率并得出定值.【詳解】(1)設(shè)橢圓的焦距為,則①,②,又③,由①②③解得,,,所以橢圓的標(biāo)準(zhǔn)方程為.(2)證明:易得,,直線的方程為,因為直線不過點,所以,由,得,所以,從

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論