版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省衡陽(yáng)市衡陽(yáng)縣2025屆數(shù)學(xué)高二上期末監(jiān)測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.曲線上的點(diǎn)到直線的最短距離是()A. B.C. D.12.已知方程表示的曲線是焦點(diǎn)在軸上的橢圓,則的取值范圍A. B.C. D.3.已知點(diǎn)是橢圓方程上的動(dòng)點(diǎn),、是直線上的兩個(gè)動(dòng)點(diǎn),且滿足,則()A.存在實(shí)數(shù)使為等腰直角三角形的點(diǎn)僅有一個(gè)B.存在實(shí)數(shù)使為等腰直角三角形的點(diǎn)僅有兩個(gè)C.存在實(shí)數(shù)使為等腰直角三角形的點(diǎn)僅有三個(gè)D.存在實(shí)數(shù)使為等腰直角三角形的點(diǎn)有無(wú)數(shù)個(gè)4.直線在y軸上的截距為()A.-1 B.1C. D.5.在四棱錐中,底面ABCD是正方形,E為PD中點(diǎn),若,,,則()A. B.C. D.6.已知F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個(gè)焦點(diǎn),過F1的直線l交橢圓于M,N兩點(diǎn),若△MF2N的周長(zhǎng)為8,則橢圓方程為()A. B.C. D.7.在區(qū)間內(nèi)隨機(jī)取一個(gè)數(shù),則方程表示焦點(diǎn)在軸上的橢圓的概率是A. B.C. D.8.直線x+y﹣1=0被圓(x+1)2+y2=3截得的弦長(zhǎng)等于()A. B.2C.2 D.49.函數(shù)的遞增區(qū)間是()A. B.和C. D.和10.邊長(zhǎng)為的正方形沿對(duì)角線折成直二面角,、分別為、的中點(diǎn),是正方形的中心,則的大小為()A. B.C. D.11.“”是“函數(shù)在上有極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.在平面直角坐標(biāo)系中,已知橢圓的上、下頂點(diǎn)分別為、,左頂點(diǎn)為,左焦點(diǎn)為,若直線與直線互相垂直,則橢圓的離心率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的離心率為2,則此雙曲線的漸近線方程___________.14.已知拋物線的焦點(diǎn)為,點(diǎn)為拋物線上一點(diǎn),以為圓心的圓經(jīng)過原點(diǎn),且與拋物線的準(zhǔn)線相切,切點(diǎn)為,線段交拋物線于點(diǎn),則___________.15.已知函數(shù),,當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍為_______16.過拋物線的焦點(diǎn)作直線交拋物線于兩點(diǎn),為坐標(biāo)原點(diǎn),記直線的斜率分別為,則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足;正項(xiàng)等比數(shù)列滿足,,(1)求數(shù)列,的通項(xiàng)公式;(2)數(shù)列滿足,的前n項(xiàng)和為,求的最大值.18.(12分)已知圓C:,直線l:.(1)當(dāng)a為何值時(shí),直線l與圓C相切;(2)當(dāng)直線l與圓C相交于A,B兩點(diǎn),且|AB|=時(shí),求直線l的方程.19.(12分)已知函數(shù)(其中a常數(shù))(1)求的單調(diào)遞增區(qū)間;(2)若,時(shí),的最小值為4,求a的值20.(12分)已知等差數(shù)列中,,前5項(xiàng)的和為,數(shù)列滿足,(1)求數(shù)列,的通項(xiàng)公式;(2)記,求數(shù)列的前n項(xiàng)和21.(12分)已知數(shù)列{an}是一個(gè)等差數(shù)列,且a2=1,a5=-5.(1)求{an}的通項(xiàng)an;(2)求{an}前n項(xiàng)和Sn的最大值22.(10分)已知函數(shù),且(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)在區(qū)間上的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】先求與平行且與相切的切線切點(diǎn),再根據(jù)點(diǎn)到直線距離公式得結(jié)果.【詳解】設(shè)與平行的直線與相切,則切線斜率k=1,∵∴,由,得當(dāng)時(shí),即切點(diǎn)坐標(biāo)為P(1,0),則點(diǎn)(1,0)到直線的距離就是線上的點(diǎn)到直線的最短距離,∴點(diǎn)(1,0)到直線的距離為:,∴曲線上的點(diǎn)到直線l:的距離的最小值為.故選:B2、A【解析】根據(jù)條件,列出滿足條件的不等式,求的取值范圍.【詳解】曲線表示交點(diǎn)在軸的橢圓,,解得:.故選A【點(diǎn)睛】本題考查根據(jù)橢圓的焦點(diǎn)位置求參數(shù)的取值范圍,意在考查基本概念,屬于基礎(chǔ)題型.3、B【解析】求出點(diǎn)到直線的距離的取值范圍,對(duì)點(diǎn)是否為直角頂點(diǎn)進(jìn)行分類討論,確定、的等量關(guān)系,綜合可得出結(jié)論.【詳解】設(shè)點(diǎn),則點(diǎn)到直線的距離為.因?yàn)闄E圓與直線均關(guān)于原點(diǎn)對(duì)稱,①若為直角頂點(diǎn),則.當(dāng)時(shí),此時(shí),不可能是等腰直角三角形;當(dāng)時(shí),此時(shí),滿足是等腰直角三角形的直角頂點(diǎn)有兩個(gè);當(dāng)時(shí),此時(shí),滿足是等腰直角三角形的直角頂點(diǎn)有四個(gè);②若不是直角頂點(diǎn),則.當(dāng)時(shí),滿足是等腰直角三角形的非直角頂點(diǎn)不存在;當(dāng)時(shí),滿足是等腰直角三角形的非直角頂點(diǎn)有兩個(gè);當(dāng)時(shí),滿足是等腰直角三角形非直角頂點(diǎn)有四個(gè).綜上所述,當(dāng)時(shí),滿足是等腰直角三角形的點(diǎn)有八個(gè);當(dāng)時(shí),滿足是等腰直角三角形的點(diǎn)有六個(gè);當(dāng)時(shí),滿足是等腰直角三角形的點(diǎn)有四個(gè);當(dāng)時(shí),滿足是等腰直角三角形的點(diǎn)有兩個(gè);當(dāng)時(shí),滿足是等腰直角三角形的點(diǎn)不存在.故選:B.4、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A5、C【解析】根據(jù)向量線性運(yùn)算法則計(jì)算即可.【詳解】故選:C6、A【解析】由題得c=1,再根據(jù)△MF2N的周長(zhǎng)=4a=8得a=2,進(jìn)而求出b的值得解.【詳解】∵F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個(gè)焦點(diǎn),∴c=1,又根據(jù)橢圓的定義,△MF2N的周長(zhǎng)=4a=8,得a=2,進(jìn)而得b=,所以橢圓方程為.故答案為A【點(diǎn)睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.7、D【解析】若方程表示焦點(diǎn)在軸上的橢圓,則,解得,,故方程表示焦點(diǎn)在軸上的橢圓的概率是,故選D.8、B【解析】如圖,圓(x+1)2+y2=3的圓心為M(?1,0),圓半徑|AM|=,圓心M(?1,0)到直線x+y?1=0的距離:|,∴直線x+y?1=0被圓(x+1)2+y2=3截得的弦長(zhǎng):.故選B.點(diǎn)睛:本題考查圓的標(biāo)準(zhǔn)方程以及直線和圓的位置關(guān)系.判斷直線與圓的位置關(guān)系一般有兩種方法:1.代數(shù)法:將直線方程與圓方程聯(lián)立方程組,再將二元方程組轉(zhuǎn)化為一元二次方程,該方程解的情況即對(duì)應(yīng)直線與圓的位置關(guān)系.這種方法具有一般性,適合于判斷直線與圓錐曲線的位置關(guān)系,但是計(jì)算量較大.2.幾何法:圓心到直線的距離與圓半徑比較大小,即可判斷直線與圓的位置關(guān)系.這種方法的特點(diǎn)是計(jì)算量較?。?dāng)直線與圓相交時(shí),可利用垂徑定理得出圓心到直線的距離,弦長(zhǎng)和半徑的勾股關(guān)系.9、C【解析】求導(dǎo)后,由可解得結(jié)果.【詳解】因?yàn)榈亩x域?yàn)椋?,由,得,解得,所以的遞增區(qū)間為.故選:C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的增區(qū)間,屬于基礎(chǔ)題.10、B【解析】建立空間直角坐標(biāo)系,以向量法去求的大小即可解決.【詳解】由題意可得平面,,則兩兩垂直以O(shè)為原點(diǎn),分別以O(shè)B、OA、OC所在直線為x、y、z軸建立空間直角坐標(biāo)系則,,,,又,則故選:B11、B【解析】對(duì)求導(dǎo),取得函數(shù)在上有極值的等價(jià)條件,再根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可【詳解】解:,則,令,可得,當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,所以,函數(shù)在處取得極小值,若函數(shù)在上有極值,則,,因?yàn)?,但是由推不出,因此是函?shù)在上有極值的必要不充分條件故選:B12、C【解析】依題意,直線與直線互相垂直,,,故選二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)離心率得出,結(jié)合得出關(guān)系,即可求出雙曲線的漸近線方程.【詳解】解:由題可知,離心率,即,又,即,則,故此雙曲線的漸近線方程為.故答案為:.14、【解析】分析可知為等腰三角形,可得出,將點(diǎn)的坐標(biāo)代入拋物線的方程,可求得的值,可得出拋物線的方程以及點(diǎn)的坐標(biāo),求出點(diǎn)的坐標(biāo),設(shè)點(diǎn),其中,分析可知,利用平面向量共線的坐標(biāo)表示求出的值,進(jìn)而可求得結(jié)果.【詳解】由拋物線的定義結(jié)合已知條件可知,則為等腰三角形,易知拋物線的焦點(diǎn)為,故,即點(diǎn),因?yàn)辄c(diǎn)在拋物線上,則,解得,所以,拋物線的方程為,故點(diǎn)、,因?yàn)橐渣c(diǎn)為圓心,為半徑的圓與直線相切于點(diǎn),則,設(shè)點(diǎn),其中,,,由題意可知,則,整理可得,解得,因此,.故答案為:.15、【解析】構(gòu)造新函數(shù),求導(dǎo)根據(jù)導(dǎo)數(shù)大于等于零得到,構(gòu)造,求導(dǎo)得到單調(diào)區(qū)間,計(jì)算函數(shù)最小值得到答案.【詳解】當(dāng)時(shí),不等式恒成立,所以,所以在上是增函數(shù),,則上恒成立,即在上恒成立,令,則,當(dāng)時(shí),,當(dāng)時(shí),,所以,所以故答案為:16、【解析】過焦點(diǎn)作直線要分為有斜率和斜率不存在兩種情況進(jìn)行分類討論.【詳解】拋物線的焦點(diǎn)當(dāng)過焦點(diǎn)的直線斜率不存在時(shí),直線方程可設(shè)為,不妨令則,故當(dāng)過焦點(diǎn)的直線斜率存在時(shí),直線方程可設(shè)為,令由整理得則,綜上,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1),(2)8【解析】(1)利用已知的關(guān)系把替換成,再把兩式作差后整理即得通項(xiàng)公式,的通項(xiàng)公式可由已知條件建立基本量的方程求解.(2)由的通項(xiàng)公式可判斷,,,當(dāng)時(shí),所有正項(xiàng)的和即為的最大項(xiàng)的值.小問1詳解】,,兩式相減得所以,又也滿足,故;設(shè)等比數(shù)列的公比為,由得,即,因?yàn)?,即,,(?fù)值舍去),所以【小問2詳解】由題意,,則,,,且當(dāng)時(shí),所以的最大值是.18、(1);(2)或.【解析】(1)由題設(shè)可得圓心為,半徑,根據(jù)直線與圓的相切關(guān)系,結(jié)合點(diǎn)線距離公式列方程求參數(shù)a的值即可.(2)根據(jù)圓中弦長(zhǎng)、半徑與弦心距的幾何關(guān)系列方程求參數(shù)a,即可得直線方程.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線距離,即,可得:.【小問2詳解】由(1)知:圓心到直線的距離,因?yàn)?,即,解得:,所以,整理得:,解得:或,則直線為或.19、(1);(2).【解析】(1)利用三角恒等變換思想化簡(jiǎn)函數(shù)解析式為,然后解不等式,可得答案;(2)由計(jì)算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的最小值,進(jìn)而可求得實(shí)數(shù)的值.【詳解】(1),令,解得.所以,函數(shù)的單調(diào)遞增區(qū)間為;(2)當(dāng)時(shí),,所以,所以,解得.20、(1),;(2).【解析】(1)利用等差數(shù)列求和公式可得,進(jìn)而可得,再利用累加法可求,即得;(2)由題可得,然后利用分組求和法即得.【小問1詳解】設(shè)公差為d,由題設(shè)可得,解得,所以;當(dāng)時(shí),,∴,當(dāng)時(shí),(滿足上述的),所以【小問2詳解】∵當(dāng)時(shí),當(dāng)時(shí),綜上所述:21、(1)an=-2n+5.(2)4【解析】(Ⅰ)設(shè){an}的公差為d,由已知條件,,解出a1=3,d=-2所以a
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 美國(guó)電影史常識(shí)單選題100道及答案解析
- 2025屆江蘇省百校生物高一上期末質(zhì)量檢測(cè)模擬試題含解析
- 吉林市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末檢測(cè)試題含解析
- 安徽省合肥市肥東縣新城高升學(xué)校2025屆生物高二上期末調(diào)研試題含解析
- 2025屆貴州省貴陽(yáng)市、六盤水市、黔南州生物高三上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析
- 2025屆河北省灤縣實(shí)驗(yàn)中學(xué)生物高一第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析
- 2024年新拆遷房屋合同書模板新
- 2025屆安徽省十大名校生物高二上期末達(dá)標(biāo)檢測(cè)模擬試題含解析
- 廣東省深圳市福田區(qū)耀華實(shí)驗(yàn)學(xué)校華文班2025屆語(yǔ)文高三第一學(xué)期期末檢測(cè)試題含解析
- 2025屆安徽定遠(yuǎn)高復(fù)學(xué)校數(shù)學(xué)高一上期末學(xué)業(yè)水平測(cè)試模擬試題含解析
- 樣板引路工程施工方案(正弘瓴筑)
- 海瀾之家特許經(jīng)營(yíng)協(xié)議合同
- 大眾汽車入侵北美市場(chǎng)
- 網(wǎng)絡(luò)安全教育培訓(xùn)課件(共30頁(yè)).ppt
- 建設(shè)銀行員工勞動(dòng)合同
- 《藝術(shù)創(chuàng)意與創(chuàng)新管理》課程教學(xué)大綱
- (完整版)卸料平臺(tái)驗(yàn)收表
- 英國(guó)建筑工程合同管理模式
- 四年級(jí)上數(shù)學(xué)校本課程
- 人教版高一英語(yǔ)必修一單詞表及音標(biāo)(共28頁(yè))
- 《迎送禮儀》PPT課件.ppt
評(píng)論
0/150
提交評(píng)論