版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆甘肅省蘭州市第五十一中學高三數(shù)學第一學期期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)的圖象上兩點,關于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.2.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件3.在中,內角所對的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列4.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.5.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.6.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.7.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當取得最大值時,雙曲線的離心率為()A. B. C. D.8.已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為()A. B. C. D.9.在三棱錐中,,且分別是棱,的中點,下面四個結論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④10.已知數(shù)列為等差數(shù)列,為其前項和,,則()A. B. C. D.11.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.412.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,其準線與坐標軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.14.在中,內角所對的邊分別是.若,,則__,面積的最大值為___.15.若函數(shù)在區(qū)間上恰有4個不同的零點,則正數(shù)的取值范圍是______.16.在平面直角坐標系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖在四邊形中,,,為中點,.(1)求;(2)若,求面積的最大值.18.(12分)已知曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù)).(1)求曲線的直角坐標方程與直線的普通方程;(2)已知點,直線與曲線交于、兩點,求.19.(12分)2019年12月以來,湖北省武漢市持續(xù)開展流感及相關疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計確診人數(shù)隨時間變化的散點圖.為了預測在未釆取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)y與時間變量t的兩個回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點圖判斷,與哪一個適宜作為累計確診人數(shù)y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)(2根據(jù)(1)的判斷結果及附表中數(shù)據(jù),建立y關于x的回歸方程;(3)以下是1月25日至1月29日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結果回答下列問題:時間1月25日1月26日1月27日1月28日1月29日累計確診人數(shù)的真實數(shù)據(jù)19752744451559747111(ⅰ)當1月25日至1月27日這3天的誤差(模型預測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強力領導下,全國人民共同采取了強力的預防“新冠肺炎”的措施,若采取措施5天后,真實數(shù)據(jù)明顯低于預測數(shù)據(jù),則認為防護措施有效,請判斷預防措施是否有效?附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850720.(12分)如圖,設A是由個實數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構成的集合.對于,記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數(shù)n,對于所有的AS(n,n),求l(A)的取值集合.21.(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,其前項和為,滿足,且成等差數(shù)列.(1)求的通項公式;(2)若數(shù)列滿足,求的值.22.(10分)已知數(shù)列滿足(),數(shù)列的前項和,(),且,.(1)求數(shù)列的通項公式:(2)求數(shù)列的通項公式.(3)設,記是數(shù)列的前項和,求正整數(shù),使得對于任意的均有.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由題可知,可轉化為曲線與有兩個公共點,可轉化為方程有兩解,構造函數(shù),利用導數(shù)研究函數(shù)單調性,分析即得解【詳解】函數(shù)的圖象上兩點,關于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導數(shù)研究函數(shù)的零點,考查了學生綜合分析,轉化劃歸,數(shù)形結合,數(shù)學運算的能力,屬于較難題.2、A【解析】
向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.【點睛】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標表示,屬于基礎題.3、C【解析】
由等差數(shù)列的性質、同角三角函數(shù)的關系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.4、D【解析】
先根據(jù)向量坐標運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標運算,引入新定義,屬于簡單題目.5、C【解析】
以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結合思想和向量法的應用,屬于中檔題.6、D【解析】
由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.7、D【解析】
先求出四個頂點、四個焦點的坐標,四個頂點構成一個菱形,求出菱形的面積,四個焦點構成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標為,四個焦點的坐標為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當取得最大值時有,,離心率,故選:D.【點睛】該題考查的是有關雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.8、B【解析】
根據(jù)函數(shù)的奇偶性及題設中關于與關系,轉換成關于的關系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數(shù),,而函數(shù)是上的偶函數(shù),,,故為周期函數(shù),且周期為故選:B【點睛】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應用,屬于基礎題.9、D【解析】
①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.10、B【解析】
利用等差數(shù)列的性質求出的值,然后利用等差數(shù)列求和公式以及等差中項的性質可求出的值.【詳解】由等差數(shù)列的性質可得,.故選:B.【點睛】本題考查等差數(shù)列基本性質的應用,同時也考查了等差數(shù)列求和,考查計算能力,屬于基礎題.11、C【解析】
首先把三視圖轉換為幾何體,該幾何體為由一個三棱柱體,切去一個三棱錐體,由柱體、椎體的體積公式進一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉換為幾何體為:該幾何體為由一個三棱柱體,切去一個三棱錐體,如圖所示:故:.故選:C.【點睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎題.12、B【解析】
先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出拋物線焦點坐標,由,結合向量的坐標運算得,直線方程為,代入拋物線方程后應用韋達定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.【點睛】本題考查直線與拋物線相交,考查向量的線性運算的坐標表示.直線方程與拋物線方程聯(lián)立后消元,應用韋達定理是解決直線與拋物線相交問題的常用方法.14、1【解析】
由正弦定理,結合,,可求出;由三角形面積公式以及角A的范圍,即可求出面積的最大值.【詳解】因為,所以由正弦定理可得,所以;所以,當,即時,三角形面積最大.故答案為(1).1(2).【點睛】本題主要考查解三角形的問題,熟記正弦定理以及三角形面積公式即可求解,屬于基礎題型.15、;【解析】
求出函數(shù)的零點,讓正數(shù)零點從小到大排列,第三個正數(shù)零點落在區(qū)間上,第四個零點在區(qū)間外即可.【詳解】由,得,,,,∵,∴,解得.故答案為:.【點睛】本題考查函數(shù)的零點,根據(jù)正弦函數(shù)性質求出函數(shù)零點,然后題意,把正數(shù)零點從小到大排列,由于0已經是一個零點,因此只有前3個零點在區(qū)間上.由此可得的不等關系,從而得出結論,本題解法屬于中檔題.16、【解析】
利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關系,考查了運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)【解析】
(1),在和中分別運用余弦定理可表示出,運用算兩次的思想即可求得,進而求出;(2)在中,根據(jù)余弦定理和基本不等式,可求得,再由三角形的面積公式以及正弦函數(shù)的有界性,求出的面積的最大值.【詳解】(1)由題設,則在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面積的最大值為,此時.【點睛】本題主要考查余弦定理在解三角形中的應用,以及三角形面積公式的應用,意在考查學生的數(shù)學運算能力,屬于中檔題.18、(1).(2)【解析】
(1)根據(jù)極坐標與直角坐標互化公式,以及消去參數(shù),即可求解;(2)設兩點對應的參數(shù)分別為,,將直線的參數(shù)方程代入曲線方程,結合根與系數(shù)的關系,即可求解.【詳解】(1)對于曲線的極坐標方程為,可得,又由,可得,即,所以曲線的普通方程為.由直線的參數(shù)方程為(為參數(shù)),消去參數(shù)可得,即直線的方程為,即.(2)設兩點對應的參數(shù)分別為,,將直線的參數(shù)方程(為參數(shù))代入曲線中,可得.化簡得:,則.所以.【點睛】本題主要考查了參數(shù)方程與普通方程,極坐標方程與直角坐標方程的互化,以及直線的參數(shù)方程的應用,著重考查了推理與運算能力,屬于基礎題.19、(1)適宜(2)(3)(?。┗貧w方程可靠(ⅱ)防護措施有效【解析】
(1)根據(jù)散點圖即可判斷出結果.(2)設,則,求出,再由回歸方程過樣本中心點求出,即可求出回歸方程.(3)(?。├帽碇袛?shù)據(jù),計算出誤差即可判斷回歸方程可靠;(ⅱ)當時,,與真實值作比較即可判斷有效.【詳解】(1)根據(jù)散點圖可知:適宜作為累計確診人數(shù)與時間變量的回歸方程類型;(2)設,則,,,;(3)(?。r,,,當時,,,當時,,,所以(2)的回歸方程可靠:(ⅱ)當時,,10150遠大于7111,所以防護措施有效.【點睛】本題考查了函數(shù)模型的應用,在求非線性回歸方程時,現(xiàn)將非線性的化為線性的,考查了誤差的計算以及用函數(shù)模型分析數(shù)據(jù),屬于基礎題.20、(Ⅰ)答案見解析;(Ⅱ)不存在,理由見解析;(Ⅲ)【解析】
(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設存在,得出矛盾,從而證明結論;(Ⅲ)通過分析正確得出l(A)的表達式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數(shù)表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因為,,所以,,...,,,,...,這18個數(shù)中有9個1,9個-1.令.一方面,由于這18個數(shù)中有9個1,9個-1,從而①,另一方面,表示數(shù)表中所有元素之積(記這81個實數(shù)之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個實數(shù)之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個數(shù),由③知,上述2n個實數(shù)中,-1的個數(shù)一定為偶數(shù),該偶數(shù)記為,則1的個數(shù)為2n-2k,所以,對數(shù)表,顯然.將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,依此類推,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,即數(shù)表滿足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度綠色建筑租賃合同(含能源管理)2篇
- 2025年度個人債務重組合同范本2篇
- 2025版施工隊中途退場原因調查及責任追究合同3篇
- 2025-2030全球微注塑材料行業(yè)調研及趨勢分析報告
- 2024年全國營養(yǎng)師技能大賽福建選拔賽考試題庫(附答案)
- 2025-2030全球軍事應用防護涂層行業(yè)調研及趨勢分析報告
- 2025-2030全球駐極體過濾介質行業(yè)調研及趨勢分析報告
- 2025-2030全球植入性人工器官行業(yè)調研及趨勢分析報告
- 外墻清洗合同范例
- 2025年度鋼材價格預測居間服務協(xié)議3篇
- 醫(yī)療大數(shù)據(jù)分析與挖掘技術
- 贍養(yǎng)老人證明書
- 團隊管理總結及計劃安排PPT模板
- 中國的世界遺產知到章節(jié)答案智慧樹2023年遼寧科技大學
- 道路通行能力手冊第4章-高速公路基本路段
- 傳感器與測試技術試卷及答案
- 2020年普通高等學校招生全國統(tǒng)一數(shù)學考試大綱
- 土方轉運方案
- (11.3.1)-10.3蒸汽壓縮制冷循環(huán)
- GB/T 679-2002化學試劑乙醇(95%)
- 總則(養(yǎng)牛場環(huán)評報告)
評論
0/150
提交評論