科大附中2025屆高一數(shù)學(xué)第一學(xué)期期末考試試題含解析_第1頁
科大附中2025屆高一數(shù)學(xué)第一學(xué)期期末考試試題含解析_第2頁
科大附中2025屆高一數(shù)學(xué)第一學(xué)期期末考試試題含解析_第3頁
科大附中2025屆高一數(shù)學(xué)第一學(xué)期期末考試試題含解析_第4頁
科大附中2025屆高一數(shù)學(xué)第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

科大附中2025屆高一數(shù)學(xué)第一學(xué)期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中既是奇函數(shù),又在區(qū)間上是增函數(shù)的是()A. B.C. D.2.下列函數(shù)中定義域為,且在上單調(diào)遞增的是A. B.C. D.3.函數(shù)()的零點所在的一個區(qū)間是()A. B.C. D.4.一個多面體的三視圖如圖所示,則該多面體的表面積為()A.21+ B.18+C.21 D.185.關(guān)于的方程的所有實數(shù)解的和為A.2 B.4C.6 D.86.已知函數(shù)的圖像如圖所示,則函數(shù)與在同一坐標(biāo)系中的圖像是()A. B.C. D.7.下列各式正確是A. B.C. D.8.已知,則=A.2 B.C. D.19.圓的半徑為,該圓上長為的弧所對的圓心角是A. B.C. D.10.下列函數(shù)在其定義域上既是奇函數(shù)又是減函數(shù)的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)函數(shù),則________.12.設(shè)函數(shù),若關(guān)于x方程有且僅有6個不同的實根.則實數(shù)a的取值范圍是_______.13.每一個聲音都是由純音合成的,純音的數(shù)學(xué)模型是函數(shù).若的部分圖象如圖所示,則的解析式為________.14.中,若,則角的取值集合為_________.15.某學(xué)校在校學(xué)生有2000人,為了增強學(xué)生的體質(zhì),學(xué)校舉行了跑步和登山比賽,每人都參加且只參加其中一項比賽,高一、高二、高三年級參加跑步的人數(shù)分別為a,b,c,且,全校參加登山的人數(shù)占總?cè)藬?shù)的.為了了解學(xué)生對本次比賽的滿意程度,按分層抽樣的方法從中抽取一個容量為200的樣本進行調(diào)查,則應(yīng)從高三年級參加跑步的學(xué)生中抽取人數(shù)為______.16.用半徑為的半圓形紙片卷成一個圓錐,則這個圓錐的高為__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.果園A占地約3000畝,擬選用果樹B進行種植,在相同種植條件下,果樹B每畝最多可種植40棵,種植成本(萬元)與果樹數(shù)量(百棵)之間的關(guān)系如下表所示.149161(1)根據(jù)以上表格中的數(shù)據(jù)判斷:與哪一個更適合作為與的函數(shù)模型;(2)已知該果園的年利潤(萬元)與的關(guān)系為,則果樹數(shù)量為多少時年利潤最大?18.已知函數(shù)求的最小正周期以及圖象的對稱軸方程當(dāng)時,求函數(shù)的最大值和最小值19.若函數(shù)在定義域內(nèi)存在實數(shù)使成立,則稱函數(shù)有“漂移點”.(1)函數(shù)是否有漂移點?請說明理由;(2)證明函數(shù)在上有漂移點;(3)若函數(shù)在上有漂移點,求實數(shù)的取值范圍.20.已知向量,,設(shè)函數(shù)Ⅰ求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;Ⅱ求函數(shù)在區(qū)間的最大值和最小值21.已知集合,其中,集合若,求;若,求實數(shù)的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】利用函數(shù)的定義域、奇偶性、單調(diào)性等性質(zhì)分別對各選項逐一判斷即可得解.【詳解】對于A,函數(shù)圖象總在x軸上方,不是奇函數(shù),A不滿足;對于B,函數(shù)在R上遞增,且,該函數(shù)是奇函數(shù),B滿足;對于C,函數(shù)是偶函數(shù),C不滿足;對于D,函數(shù)定義域是非零實數(shù)集,而,D不滿足.故選:B2、D【解析】先求解選項中各函數(shù)的定義域,再判定各函數(shù)的單調(diào)性,可得選項.【詳解】因為的定義域為,的定義域為,所以排除選項B,C.因為在是減函數(shù),所以排除選項A,故選D.【點睛】本題主要考查函數(shù)的性質(zhì),求解函數(shù)定義域時,熟記常見的類型:分式,偶次根式,對數(shù)式等,單調(diào)性一般結(jié)合初等函數(shù)的單調(diào)性進行判定,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).3、C【解析】將各區(qū)間的端點值代入計算并結(jié)合零點存在性定理判斷即可.【詳解】由,,,所以,根據(jù)零點存在性定理可知函數(shù)在該區(qū)間存在零點.故選:C4、A【解析】由題意,該多面體的直觀圖是一個正方體挖去左下角三棱錐和右上角三棱錐,如下圖,則多面體的表面積.故選A.考點:多面體的三視圖與表面積.5、B【解析】本道題先構(gòu)造函數(shù),然后通過平移得到函數(shù),結(jié)合圖像,計算,即可【詳解】先繪制出,分析該函數(shù)為偶函數(shù),而相當(dāng)于往右平移一個單位,得到函數(shù)圖像為:發(fā)現(xiàn)交點A,B,C,D關(guān)于對稱,故,故所有實數(shù)解的和為4,故選B【點睛】本道題考查了函數(shù)奇偶性判定法則和數(shù)形結(jié)合思想,繪制函數(shù)圖像,即可6、B【解析】由函數(shù)的圖象可得,函數(shù)的圖象過點,分別代入函數(shù)式,,解得,函數(shù)與都是增函數(shù),只有選項符合題意,故選B.【方法點晴】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意的選項一一排除.7、D【解析】對于,,,故,故錯誤;根據(jù)對數(shù)函數(shù)的單調(diào)性,可知錯誤故選8、D【解析】.故選.9、B【解析】由弧長公式可得:,解得.考點:弧度制.10、D【解析】對于A:由定義法判斷出不是奇函數(shù),即可判斷;對于B:判斷出在R上為增函數(shù),即可判斷;對于C:不能說在定義域是減函數(shù),即可判斷;對于D:用圖像法判斷.【詳解】對于A:的定義域為R..所以不是奇函數(shù),故A錯誤;對于B:在R上為增函數(shù).故B錯誤;對于C:在為減函數(shù),在為減函數(shù),但不能說在定義域是減函數(shù).故C錯誤;對于D:,作出圖像如圖所示:所以既是奇函數(shù)又是減函數(shù).故D正確.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】根據(jù)分段函數(shù)的定義,分別求出和,計算即可求出結(jié)果.【詳解】由題知,,,.故答案為:6.【點睛】本題考查了分段函數(shù)求函數(shù)值的問題,考查了對數(shù)的運算.屬于基礎(chǔ)題.12、或或【解析】作出函數(shù)的圖象,設(shè),分關(guān)于有兩個不同的實數(shù)根、,和兩相等實數(shù)根進行討論,當(dāng)方程有兩個相等的實數(shù)根時,再檢驗,當(dāng)方程有兩個不同的實數(shù)根、時,或,再由二次方程實數(shù)根的分布進行討論求解即可.【詳解】作出函數(shù)的簡圖如圖,令,要使關(guān)于的方程有且僅有個不同的實根,(1)當(dāng)方程有兩個相等的實數(shù)根時,由,即,此時當(dāng),此時,此時由圖可知方程有4個實數(shù)根,此時不滿足.當(dāng),此時,此時由圖可知方程有6個實數(shù)根,此時滿足條件(2)當(dāng)方程有兩個不同的實數(shù)根、時,則或當(dāng)時,由可得則的根為由圖可知當(dāng)時,方程有2個實數(shù)根當(dāng)時,方程有4個實數(shù)根,此時滿足條件.當(dāng)時,設(shè)由,則,即綜上所述:滿足條件的實數(shù)a的取值范圍是或或故答案為:或或【點睛】關(guān)鍵點睛:本題考查利用復(fù)合型二次函數(shù)的零點個數(shù)求參數(shù),考查數(shù)形結(jié)合思想的應(yīng)用,解答本題的關(guān)鍵由條件結(jié)合函數(shù)的圖象,分析方程的根情況及其范圍,再由二次方程實數(shù)根的分布解決問題,屬于難題.13、【解析】結(jié)合正弦函數(shù)的性質(zhì)確定參數(shù)值.【詳解】由圖可知,最小正周期,所以,所以.故答案為:.【點睛】本題考查由三角函數(shù)圖象確定其解析式,掌握正弦函數(shù)的圖象與性質(zhì)是解題關(guān)鍵.14、【解析】△ABC中,由tanA=1,求得A的值【詳解】∵△ABC中,tanA=1>0,故∴A=故答案為【點睛】本題主要考查三角函數(shù)的化簡,及與三角形的綜合,應(yīng)注意三角形內(nèi)角的范圍15、【解析】由題意求得樣本中抽取的高三的人數(shù)為人進而求得樣本中高三年級參加登山的人,即可求解.【詳解】由題意,高一、高二、高三年級參加跑步的人數(shù)分別為a,b,c,且,所以樣本中抽取的高三的人數(shù)為人,又因為全校參加登山的人數(shù)占總?cè)藬?shù)的,所以樣本中高三年級參加登山的人數(shù)為,所以樣本中高三年級參加跑步的人數(shù)為人.故答案為:.16、【解析】根據(jù)圓錐的底面周長等于半圓形紙片的弧長建立等式,再根據(jù)半圓形紙片的半徑為圓錐的母線長求解即可.【詳解】由題得,半圓形紙片弧長為,設(shè)圓錐的底面半徑為,則,故圓錐的高為.故答案為:【點睛】本題主要考查了圓錐展開圖中的運算,重點是根據(jù)圓錐底面的周長等于展開后扇形的弧長,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)更適合作為與的函數(shù)模型(2)果樹數(shù)量為時年利潤最大【解析】(1)將點代入和,求出兩個函數(shù),然后將和代入,看哪個算出的數(shù)據(jù)接近實際數(shù)據(jù)哪個就更適合作為與的函數(shù)模型.(2)根據(jù)(1)可得,利用二次函數(shù)的性質(zhì)求最大利潤.【小問1詳解】①若選擇作為與的函數(shù)模型,將的坐標(biāo)分別帶入,得解得此時,當(dāng)時,,當(dāng)時,,與表格中的和相差較大,所以不適合作為與的函數(shù)模型.②若選擇作為與的函數(shù)模型,將的坐標(biāo)分別帶入,得解得此時,當(dāng)時,,當(dāng)時,,剛好與表格中的和相符合,所以更適合作為與的函數(shù)模型.【小問2詳解】由題可知,該果園最多120000棵該呂種果樹,所以確定的取值范圍為,令,則經(jīng)計算,當(dāng)時,取最大值(萬元),即,時(每畝約38棵),利潤最大.18、(1)最小正周期為,對稱軸方程為(2)最小值0;最大值【解析】(1)先根據(jù)二倍角公式以及配角公式將函數(shù)化為基本三角函數(shù),再根據(jù)正弦函數(shù)性質(zhì)求周期以及圖象的對稱軸方程(2)先根據(jù)自變量范圍,確定范圍,再根據(jù)正弦函數(shù)圖像得最值試題解析:解:的最小正周期為由得的對稱軸方程為當(dāng)時,當(dāng)時,即時,函數(shù)f(x)取得最小值0;當(dāng)時,即時,函數(shù)f(x)取得最大值19、(1)沒有,理由見解析;(2)證明見解析;(3).【解析】(1)根據(jù)給定定義列方程求解判斷作答.(2)根據(jù)給定定義構(gòu)造函數(shù),由零點存在性定理判斷函數(shù)的零點情況即可作答.(3)根據(jù)給定定義列方程,變形構(gòu)造函數(shù),利用函數(shù)有零點分類討論計算作答.【小問1詳解】假設(shè)函數(shù)有“漂移點”,則,此方程無實根,所以函數(shù)沒有漂移點.【小問2詳解】令,,則,有,即有,而函數(shù)在單調(diào)遞增,因此,在上有一個實根,所以函數(shù)在上有漂移點.小問3詳解】依題意,設(shè)在上的漂移點為,則,即,亦即,整理得:,由已知可得,令,,則在上有零點,當(dāng)時,的圖象的對稱軸為,而,則,即,整理得,解得,則,當(dāng)時,,0,則不成立,當(dāng)時,,在上單調(diào)遞增,又,則恒大于0,因此,在上沒有零點.綜上得,.【點睛】思路點睛:涉及一元二次方程的實根分布問題,可借助二次函數(shù)的圖象及其性質(zhì),利用數(shù)形結(jié)合的方法解決問題.20、(Ⅰ)最小正周期是,增區(qū)間為,;(Ⅱ)最大值為5,最小值為4【解析】Ⅰ根據(jù)向量數(shù)量積,利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,利用正弦函數(shù)的周期公式可得函數(shù)的周期,利用正弦函數(shù)的單調(diào)性解不等式,可得到函數(shù)的遞增區(qū)間;Ⅱ根據(jù)的范圍得的范圍,結(jié)合正弦函數(shù)的單調(diào)性可得的最大最小值【詳解】Ⅰ,,,,由,得,所以的增區(qū)間為,;Ⅱ,,可得,的最大值為5,最小值為4【點睛】以三角形和平面向量為載體,三角恒等變換為手段,三角函數(shù)的圖象與性質(zhì)為工具,對三角函數(shù)及解三角形進行考查是近幾年高考考查的一類熱點問題,一般難度不大,但綜合性較強.解答這類問題,兩角和與差的正余弦公式、誘導(dǎo)公式以及二倍角公式,一定要熟

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論