江蘇南京玄武區(qū)2025屆高二數(shù)學第一學期期末考試模擬試題含解析_第1頁
江蘇南京玄武區(qū)2025屆高二數(shù)學第一學期期末考試模擬試題含解析_第2頁
江蘇南京玄武區(qū)2025屆高二數(shù)學第一學期期末考試模擬試題含解析_第3頁
江蘇南京玄武區(qū)2025屆高二數(shù)學第一學期期末考試模擬試題含解析_第4頁
江蘇南京玄武區(qū)2025屆高二數(shù)學第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇南京玄武區(qū)2025屆高二數(shù)學第一學期期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.兩圓x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直線的方程為()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=02.已知雙曲線,其漸近線方程為,則a的值為()A. B.C. D.23.若圓與圓相外切,則的值為()A. B.C.1 D.4.已知,,,執(zhí)行如圖所示的程序框圖,輸出的值為()A. B.C. D.5.已知為定義在R上的偶函數(shù)函數(shù),且在單調(diào)遞減.若關于的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B.C. D.6.在下列各圖中,每個圖的兩個變量具有相關關系的圖是()A.(1)(2) B.(1)(3)C.(2) D.(2)(3)7.已知圓,直線,直線l被圓O截得的弦長最短為()A. B.C.8 D.98.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直9.平面的法向量,平面的法向量,已知,則等于()A B.C. D.10.已知是拋物線的焦點,為拋物線上的動點,且的坐標為,則的最小值是A. B.C. D.11.已知函數(shù),若在處取得極值,且恒成立,則實數(shù)的最大值為()A. B.C. D.12.甲、乙同時參加某次數(shù)學檢測,成績?yōu)閮?yōu)秀的概率分別為、,兩人的檢測成績互不影響,則兩人的檢測成績都為優(yōu)秀的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在處的切線方程為,則___________.14.橢圓(a>b>0)的左、右頂點分別是A,B,左、右焦點分別是F1,F(xiàn)2.若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為___________15.已知雙曲線:,斜率為的直線與E的左右兩支分別交于A,B兩點,點P的坐標為,直線AP交E于另一點C,直線BP交E于另一點D.若直線CD的斜率為,則E的離心率為___________16.設O為坐標原點,F(xiàn)為雙曲線的焦點,過F的直線l與C的兩條漸近線分別交于A,B兩點.若,且的內(nèi)切圓的半徑為,則C的離心率為____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知向量,(1)求;(2)求;(3)若(),求的值18.(12分)已知橢圓C:的離心率為,,是橢圓的左、右焦點,過且垂直于x軸的直線被橢圓C截得的線段長為1(1)求橢圓C的方程;(2)過點的直線l與橢圓C交于A,B兩點,求(O為坐標原點)的面積的最大值19.(12分)已知圓,點,點是圓上任意一點,線段的垂直平分線交直線于點,點的軌跡記為曲線.(1)求曲線的方程;(2)已知曲線上一點,動圓,且點在圓外,過點作圓的兩條切線分別交曲線于點,.(i)求證:直線的斜率為定值;(ii)若直線與交于點,且時,求直線的方程.20.(12分)已知點和圓.(1)求圓的圓心坐標和半徑;(2)設為圓上的點,求的取值范圍.21.(12分)如圖,在正方體中,E,F(xiàn),G,H,K,L分別是AB,,,,,DA各棱的中點.(1)求證:E,F(xiàn),G,H,K,L共面:(2)求證:平面EFGHKL;(3)求與平面EFGHKL所成角的余弦值.22.(10分)已知:(常數(shù));:代數(shù)式有意義(1)若,求使“”為真命題的實數(shù)的取值范圍;(2)若是成立的充分不必要條件,求實數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】兩圓方程相減得出公共弦所在直線的方程.【詳解】兩圓方程相減得,即x﹣2y+6=0則公共弦所在直線的方程為x﹣2y+6=0故選:C2、A【解析】由雙曲線方程,根據(jù)其漸近線方程有,求參數(shù)值即可.【詳解】由漸近線,結合雙曲線方程,∴,可得.故選:A.3、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因為兩圓相外切,所以,解得,故選:D4、B【解析】計算出、的值,執(zhí)行程序框圖中的程序,進而可得出輸出結果.【詳解】,,則,執(zhí)行如圖所示的程序,,成立,則,不成立,輸出的值為.故選:B.5、C【解析】由條件利用函數(shù)的奇偶性和單調(diào)性,可得對恒成立,轉化為且對恒成立.求得相應的最大值和最小值,從而求得的范圍【詳解】定義在上的函數(shù)為偶函數(shù),且在上遞減,在上單調(diào)遞增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,則,,,,在上遞增,上遞減,令,當時,,在上遞減,故可知,解得,所以實數(shù)m的取值范圍是故選:C6、D【解析】根據(jù)圖形可得(1)具有函數(shù)關系;(2)(3)的散點分布在一條直線或曲線附近,具有相關關系;(4)的散點雜亂無章,不具有相關關系.【詳解】對(1),所有的點都在曲線上,故具有函數(shù)關系;對(2),所有的散點分布在一條直線附近,具有相關關系;對(3),所有的散點分布在一條曲線附近,具有相關關系;對(4),所有的散點雜亂無章,不具有相關關系.故選:D.7、B【解析】先求得直線過定點,再根據(jù)當點與圓心連線垂直于直線l時,被圓O截得的弦長最短求解.【詳解】因為直線方程,即為,所以直線過定點,因為點在圓的內(nèi)部,當點與圓心連線垂直于直線l時,被圓O截得的弦長最短,點與圓心(0,0)的距離為,此時,最短弦長為,故選:B8、B【解析】根據(jù)可判斷兩平面垂直.【詳解】因為,所以,所以,垂直.故選:B.9、A【解析】根據(jù)兩個平面平行得出其法向量平行,根據(jù)向量共線定理進行計算即可.【詳解】由題意得,因為,所以(),即,解得,所以.故選:A10、C【解析】由題意可得,拋物線的焦點,準線方程為過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角∴當最小時,最小,則當和拋物線相切時,最小設切點,由的導數(shù)為,則的斜率為.∴,則.∴,∴故選C點睛:本題主要考查拋物線的定義和幾何性質,與焦點、準線有關的問題一般情況下都與拋物線的定義有關,解決這類問題一定要注意點到焦點的距離與點到準線的距離的轉化,這樣可利用三角形相似,直角三角形中的銳角三角函數(shù)或是平行線段比例關系可求得距離弦長以及相關的最值等問題.11、D【解析】根據(jù)已知在處取得極值,可得,將在恒成立,轉化為,只需求,求出最小值即可得答案【詳解】解:,,由在處取得極值,得,解得,所以,,其中,.當時,,此時函數(shù)單調(diào)遞減,當時,,此時函數(shù)單調(diào)遞增,故函數(shù)在處取得極小值,,恒成立,轉化為,令,,則,,令得,當時,,此時函數(shù)單調(diào)遞減,當時,,此時函數(shù)單調(diào)遞增,所以,即得,故選:D12、D【解析】利用相互獨立事件概率乘法公式直接求解.【詳解】甲、乙同時參加某次數(shù)學檢測,成績?yōu)閮?yōu)秀的概率分別為、,兩人的檢測成績互不影響,則兩人的檢測成績都為優(yōu)秀的概率為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)導數(shù)的幾何意義可得,根據(jù)切點在切線上可得.【詳解】因為切線的斜率為,所以,又切點在切線上,所以,所以,所以.故答案為:.14、【解析】本題著重考查等比中項的性質,以及橢圓的離心率等幾何性質,同時考查了函數(shù)與方程,轉化與化歸思想.利用橢圓及等比數(shù)列的性質解題.由橢圓的性質可知:,,.又已知,,成等比數(shù)列,故,即,則.故.即橢圓的離心率為.【點評】求雙曲線的離心率一般是通過已知條件建立有關的方程,然后化為有關的齊次式方程,進而轉化為只含有離心率的方程,從而求解方程即可.體現(xiàn)考綱中要求掌握橢圓的基本性質.來年需要注意橢圓的長軸,短軸長及其標準方程的求解等.15、【解析】分別設線段的中點,線段的中點,再利用點差法可表示出,由平行關系易知三點共線,從而利用斜率相等的關系構造方程,代入整理可得到關系,利用雙曲線得到關于的齊次方程,進而求得離心率.【詳解】設,,線段的中點,兩式相減得:…①設,,線段的中點同理可得:…②,易知三點共線,將①②代入得:,所以,即,由題意可得,故.∴,即故答案為:16、##【解析】,作出漸近線圖像,由題可知的內(nèi)切圓圓心在x軸上,過內(nèi)心作OA和AB的垂線,可得幾何關系,據(jù)此即可求解.【詳解】雙曲線漸近線OA與OB如圖所示,OA與OB關于x軸對稱,設△OAB的內(nèi)切圓圓心為,則M在的平分線上,過點分別作于點于,由,則四邊形為正方形,由焦點到漸近線的距離為得,又,∴,且,∴,∴,則.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)根據(jù)向量數(shù)量積的坐標表示即可得解;(2)求出,再根據(jù)空間向量的模的坐標表示即可得解;(3)由,可得,再根據(jù)數(shù)量積的運算律即可得解.【小問1詳解】解:;【小問2詳解】解:;【小問3詳解】解:因為,所以,即,解得.18、(1);(2)1.【解析】(1)根據(jù)給定條件結合列式計算得解.(2)設出直線l的方程,與橢圓C的方程聯(lián)立,借助韋達定理結合均值不等式計算作答.【小問1詳解】橢圓C的半焦距為c,離心率,因過且垂直于x軸的直線被橢圓C截得的弦長為1,將代入橢圓C方程得:,即,則有,解得,所以橢圓C的方程為.【小問2詳解】由(1)知,,依題意,直線l的斜率不為0,則設直線l的方程為,,,由消去x并整理得:,,,的面積,,設,,,,當且僅當,時取得“=”,于是得,,所以面積的最大值為1.【點睛】思路點睛:解決直線與橢圓的綜合問題時,要注意:(1)注意觀察應用題設中的每一個條件,明確確定直線、橢圓的條件;(2)強化有關直線與橢圓聯(lián)立得出一元二次方程后的運算能力,重視根與系數(shù)之間的關系、弦長、斜率、三角形的面積等問題19、(1)(2)(i)答案見解析(ii)或【解析】(1)通過幾何關系可知,且,由此可知點的軌跡是以點、為焦點,且實軸長為的雙曲線,通過雙曲線的定義即可求解;(2)(i)設點,,直線的方程為,將直線方程與雙曲線方程聯(lián)立利用韋達定理及求出,即得到直線的斜率為定值;(ii)由(i)可知,由已知可得,聯(lián)立方程即可求出,的值,代入即可求出的值,即可得到直線方程.【小問1詳解】由題意可知,∵,且,∴根據(jù)雙曲線的定義可知,點的軌跡是以點、為焦點,且實軸長為的雙曲線,即,,,則點的軌跡方程為;【小問2詳解】(i)設點,,直線的方程為,聯(lián)立得,其中,且,,,∵曲線上一點,∴,由已知條件得直線和直線關于對稱,則,即,整理得,,,,即,則或,當,直線方程為,此直線過定點,應舍去,故直線的斜率為定值.(ii)由(i)可知,由已知得,即,當時,,,即,,,解得或,但是當時,,故應舍去,當時,直線方程為,當時,,即,,,解得(舍去)或,當時,直線方程為,故直線的方程為或.20、(1)圓心的坐標為,半徑;(2)【解析】(1)利用配方法化圓的一般方程為標準方程,可得圓心坐標與半徑;(2)由兩點間的距離公式求得,得到與,則的取值范圍可求【小問1詳解】解:由,得,圓心的坐標為,半徑;【小問2詳解】解:,,,,的取值范圍是21、(1)證明見解析;(2)證明見解析;(3).【解析】建立空間直角坐標系,求出各點的坐標;(1)用向量的坐標運算證明向量共面,進而證明點共面;(2)利用向量的數(shù)量積的坐標運算證明,即可;(3)確定平面EFGHKL的一個法向量,利用空間角度的向量計算公式求得答案.【小問1詳解】證明:以D為原點,分別以DA,DC,所在直線為x,y,z軸建立空間直角坐標系,不妨設正方體的棱長為2.則,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它們過同一點E,所以E,F(xiàn),G,H,K,L共面.【小問2詳解】證明:由(1)得,,又故,,又,所以平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論