版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省長沙市芙蓉區(qū)鐵路第一中學2025屆高二上數學期末達標檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知、是橢圓的兩個焦點,P為橢圓C上一點,且,若的面積為9,則的值為()A.1 B.2C.3 D.42.某地區(qū)高中分三類,A類學校共有學生2000人,B類學校共有學生3000人,C類學校共有學生4000人,若采取分層抽樣的方法抽取900人,則A類學校中的學生甲被抽到的概率()A. B.C. D.3.在公比為為q等比數列中,是數列的前n項和,若,則下列說法正確的是()A. B.數列是等比數列C. D.4.圓的圓心和半徑分別是()A. B.C. D.5.已知橢圓+=1(a>b>0)的右焦點為F(3,0),過點F的直線交橢圓于A、B兩點.若AB的中點坐標為(1,-1),則E的方程為A.+=1 B.+=1C.+=1 D.+=16.如圖,用隨機模擬方法近似估計在邊長為e(e為自然對數的底數)的正方形中陰影部分的面積,先產生兩組區(qū)間上的隨機數和,因此得到1000個點對,再統(tǒng)計出落在該陰影部分內的點數為260個,則此陰影部分的面積約為()A.0.70 B.1.04C.1.86 D.1.927.如圖,在長方體中,,E,F(xiàn)分別為的中點,則異面直線與所成角的余弦值為()A. B.C. D.8.已知直線為拋物線的準線,直線經過拋物線的焦點,與拋物線交于點,則的最小值為()A. B.C.4 D.89.“”是“方程是圓的方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知點,點關于原點對稱點為,則()A. B.C. D.11.若方程表示圓,則實數的取值范圍為()A. B.C. D.12.已知橢圓的長軸長是短軸長的倍,左焦點、右頂點和下頂點分別為,坐標原點到直線的距離為,則的面積為()A. B.4C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某人實施一項投資計劃,從2021年起,每年1月1日,把上一年工資的10%投資某個項目.已知2020年他的工資是10萬元,預計未來十年每年工資都會逐年增加1萬元;若投資年收益是10%,一年結算一次,當年的投資收益自動轉入下一年的投資本金,若2031年1月1日結束投資計劃,則他可以一次性取出的所有投資以及收益應有__________萬元.(參考數據:,,)14.如圖:二面角等于,是棱上兩點,分別在半平面內,,則的長等于__________.15.曲線在點處的切線方程為_________16.已知函數的圖像在點處的切線方程是,則=______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率是,且過點.(1)求橢圓的標準方程;(2)若直線與橢圓交于A、B兩點,線段的中點為,為坐標原點,且,求面積的最大值.18.(12分)(1)若在是減函數,求實數m的取值范圍;(2)已知函數在R上無極值點,求a的值.19.(12分)設p:;q:關于x的方程無實根.(1)若q為真命題,求實數k的取值范圍;(2)若是假命題,且是真命題,求實數k的取值范圍.20.(12分)已知為坐標原點,圓的圓心在軸上,點、均在圓上.(1)求圓的標準方程;(2)若直線與橢圓交于兩個不同的點、,點在圓上,求面積的最大值.21.(12分)已知函數在處有極值.(1)求常數a,b的值;(2)求函數在上的最值.22.(10分)已知斜率為的直線與橢圓:交于,兩點(1)若線段的中點為,求的值;(2)若,求證:原點到直線的距離為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據橢圓定義,和條件列式,再通過變形計算求解.【詳解】由條件可知,,即,解得:.故選:C【點睛】本題考查橢圓的定義,焦點三角形的性質,重點考查轉化與變形,計算能力,屬于基礎題型.2、D【解析】利用抽樣的性質求解【詳解】所有學生數為,所以所求概率為.故選:D3、D【解析】根據等比數列的通項公式、前項和公式的基本量運算,即可得到答案;【詳解】,,故A錯誤;,,顯然數列不是等比數列,故B錯誤;,故C錯誤;,,故D成立;故選:D4、B【解析】將圓的方程化成標準方程,即可求解.【詳解】解:.故選:B.5、D【解析】設、,所以,運用點差法,所以直線的斜率為,設直線方程為,聯(lián)立直線與橢圓的方程,所以;又因為,解得.【考點定位】本題考查直線與圓錐曲線的關系,考查學生的化歸與轉化能力.6、D【解析】根據幾何概型的概率公式即可直接求出答案.【詳解】易知,根據幾何概型的概率公式,得,所以.故選:D.7、A【解析】利用平行線,將異面直線的夾角問題轉化為共面直線的夾角問題,再解三角形.【詳解】取BC中點H,BH中點I,連接AI、FI、,因為E為中點,在長方體中,,所以四邊形是平行四邊形,所以所以,又因為F為的中點,所以,所以,則即為異面直線與所成角(或其補角).設AB=BC=4,則,則,,根據勾股定理:,,,所以是等腰三角形,所以.故B,C,D錯誤.故選:A.8、D【解析】先求拋物線的方程,再聯(lián)立直線方程和拋物線方程,由弦長公式可求的最小值.【詳解】因為直線為拋物線的準線,故即,故拋物線方程為:.設直線,則,,而,當且僅當等號成立,故的最小值為8,故選:D.9、A【解析】利用充分條件和必要條件的定義判斷.【詳解】若方程表示圓,則,即,解得或,故“”是“方程是圓的方程”的充分不必要條件,故選:A10、C【解析】根據空間兩點間距離公式,結合對稱性進行求解即可.【詳解】因為點關于原點的對稱點為,所以,因此,故選:C11、D【解析】將方程化為標準式即可.【詳解】方程化為標準式得,則.故選:D.12、C【解析】設,根據題意,可知的方程為直線,根據原點到直線的距離建立方程,求出,進而求出,的值,以及到直線的距離,再根據面積公式,即可求出結果.【詳解】設,由題意可知,其中,所以的方程為,即所以原點到直線的距離為,所以,即,;所以直線的方程為,所以到直線的距離為;又,所以的面積為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、24【解析】根據條件求得每一年投入在最終結算時的總收入,利用錯位相減法求得總收入.【詳解】由題知,2021年的投入在結算時的收入為,2022年的投入在結算時的收入為,,2030年的投入在結算時的收入為,則結算時的總投資及收益為:①,則②,由①-②得,,則,故答案為:2414、【解析】由題意,二面角等于,根據,結合向量的運算,即可求解.【詳解】由題意,二面角等于,可得向量,,因為,可得,所以.故答案為:15、【解析】求導,求出切線斜率,用點斜式寫出直線方程,化簡即可.【詳解】,曲線在點處的切線方程為,即故答案為:16、3【解析】根據導數幾何意義,可得的值,根據點M在切線上,可求得的值,即可得答案.【詳解】由導數的幾何意義可得,,又在切線上,所以,則=3,故答案為:3【點睛】本題考查導數的幾何意義的應用,考查分析理解的能力,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)2.【解析】(1)根據已知條件列出關于a、b、c的方程組即可求得橢圓標準方程;(2)直線l和x軸垂直時,根據已知條件求出此時△AOB面積;直線l和x軸不垂直時,設直線方程為點斜式y(tǒng)=kx+t,代入橢圓方程得二次方程,結合韋達定理和弦長得k和t關系,表示出△AOB的面積,結合基本不等式即可求解三角形面積最值.【小問1詳解】由題知,解得,∴橢圓的標準方程為.【小問2詳解】當軸時,位于軸上,且,由可得,此時;當不垂直軸時,設直線的方程為,與橢圓交于,,由,得.得,,從而已知,可得.∵.設到直線的距離為,則,結合化簡得此時的面積最大,最大值為2.當且僅當即時取等號,綜上,的面積的最大值為2.18、(1);(2)1【解析】(1)將問題轉化為在內恒成立,求出的最小值,即可得到答案;(2)對函數求導得,由,即可得到答案;【詳解】(1)依題意知,在內恒成立,所以在內恒成立,所以,因為的最小值為1,所以,所以實數m的取值范圍是.(2),依題意有,即,,解得.19、(1);(2).【解析】(1)根據命題的真假,結合一元二次方程無實根,列出的不等式,即可求得結果;(2)求得命題為真對應的的范圍,結合命題一個為真命題一個為假命題,即可列出的不等式組,求解即可.【小問1詳解】若q為真命題,則,解得,即實數k的取值范圍為.【小問2詳解】若p為真,,解得,由是假命題,且是真命題,得:p、q兩命題一真一假,當p真q假時,或,得,當p假q真時,,此時無解.綜上的取值范圍為.20、(1);(2).【解析】(1)求出圓心坐標,可求得圓的半徑,進而可得出圓的標準方程;(2)求得點到直線的距離,將直線的方程與橢圓的方程聯(lián)立,求得的表達式,利用三角形的面積公式結合基本不等式可求得結果.【小問1詳解】解:由題知,線段的中點為,直線的斜率,所以線段的中垂線為,即為,所以圓的圓心為軸與的交點,所以圓的半徑,所以圓的標準方程為.【小問2詳解】解:由題知:圓心到直線的距離,因為,所以圓心到直線的距離,所以到直線的距離,設點、,聯(lián)立可得,,,則,所以,,所以,所以,所以當且僅當,即時等號成立,所以當時,取得最大值.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關結論來求最值;二是代數法,常將圓錐曲線的最值問題轉化為二次函數或三角函數的最值問題,然后利用基本不等式、函數的單調性或三角函數的有界性等求最值21、(1);(2)最大值為-1,最值為-5.【解析】(1)根據給定條件結合函數的導數建立方程,求解方程并驗證作答.(2)利用導數探討函數在上的單調性即可計算作答.【小問1詳解】依題意:,則,解得:,當時,,當時,,當時,,則函數在處有極值,所以.【小問2詳解】由(1)知:,,,當時,,當時,,因此,在上單調遞增,在上單調遞減,于是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版施工隊中途退場預防措施及違約責任協(xié)議3篇
- 2025年湖南省懷化靖州苗族侗族自治縣自來水公司招聘筆試參考題庫附帶答案詳解
- 2025年銷售員聘用協(xié)議書含客戶關系維護服務2篇
- 2025年度新型智能公寓租賃合同范本4篇
- 2025版安防產品銷售代理居間服務合同范本
- 2025年度個人租車保險及救援服務合作協(xié)議4篇
- 2025年全球及中國半導體光刻模擬器行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球心包穿刺套件行業(yè)調研及趨勢分析報告
- 2025年全球及中國光熱液壓系統(tǒng)行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年鋼構工程裝配式建筑合同樣本2篇
- 2024年湖南商務職業(yè)技術學院單招職業(yè)適應性測試題庫帶答案
- 全國身份證前六位、區(qū)號、郵編-編碼大全
- 2024-2025學年福建省廈門市第一中學高一(上)適應性訓練物理試卷(10月)(含答案)
- 2024年全國各地中考試題分類匯編:作文題目
- 《糖拌西紅柿 》 教案()
- 彈性力學數值方法:解析法:彈性力學中的變分原理
- 《零售學第二版教學》課件
- 廣東省珠海市香洲區(qū)2023-2024學年四年級下學期期末數學試卷
- 房地產行業(yè)職業(yè)生涯規(guī)劃
- 江蘇省建筑與裝飾工程計價定額(2014)電子表格版
- MOOC 數字電路與系統(tǒng)-大連理工大學 中國大學慕課答案
評論
0/150
提交評論