第五章 平面直角坐標系(單元重點綜合測試)_第1頁
第五章 平面直角坐標系(單元重點綜合測試)_第2頁
第五章 平面直角坐標系(單元重點綜合測試)_第3頁
第五章 平面直角坐標系(單元重點綜合測試)_第4頁
第五章 平面直角坐標系(單元重點綜合測試)_第5頁
已閱讀5頁,還剩30頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第五章平面直角坐標系(單元重點綜合測試)一、單選題(每題3分,共24分)1.如果用表示張先生的座位號:22排5號,那么王女士的座位號25排12號表示為()A. B. C. D.2.在平面直角坐標系中,點所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知點和點是坐標平面內(nèi)的兩個點,且它們關(guān)于直線對稱,則平面內(nèi)點的坐標為()A. B. C. D.4.若點的坐標是,點到軸的距離是()A.3 B.1 C. D.5.如圖,在平面直角坐標系中,點,,以為直角邊構(gòu)造等腰直角,,過點作軸于,則點的坐標為()A. B. C. D.6.已知兩點和,下列說法正確的有()個①直線軸;

②A、B兩點間的距離③三角形的面積

④線段的中點坐標是A.1個 B.2個 C.3個 D.4個7.已知點在第四象限,則m的取值范圍在數(shù)軸上表示正確的是()A.

B.

C.

D.

8.如圖,一只小螞蟻在平面直角坐標系中按圖中路線進行“爬樓梯”運動,第1次它從原點運動到點,第2次運動到點,第3次運動到點……按這樣的運動規(guī)律,經(jīng)過第2023次運動后,小螞蟻的坐標是()

A. B. C. D.填空題(每題3分,共30分)9.如圖是人民公園的部分平面示意圖,為準確表示地理位置,可以建立坐標系用坐標表示地理位置,若牡丹園的坐標是,南門的坐標是,則湖心亭的坐標為____________.

10.如圖,等腰,則點坐標為________________.

11.已知點,在y軸上有一點B,點B與點M的距離為5,則點B的坐標為__________.12.已知點P的坐標為,則點P到x軸的距離為_____.13.已知點在y軸上,則的值為_______________.14.在平面直角坐標系中,點,點,且軸,則____.15.如圖,在平面直角坐標系中,將線段平移使得一個端點與點重合,已知點,,,則線段平移后另一個端點的坐標為__________.

16.如圖,等邊三角形的頂點,規(guī)定把等邊三角形先沿x軸翻折,再向左平移1個單位長度為一次變換.如果這樣連續(xù)經(jīng)過2021次變換后,等邊三角形的頂點A的坐標為_____.

17.在平面直角坐標系中,點的坐標,點是軸上的一個動點,當線段的長最短時,點的坐標為______.18.如圖所示放置的都是邊長為2的等邊三角形,邊在軸上,且點,都在同一直線上,則的坐標是__________.

三、解答題(一共9題,共86分)19.(本題8分)為讓每個農(nóng)村孩子都能上學,國家實施了“農(nóng)村中小學寄宿制學校建設工程”,如圖是某寄宿制學校的平面示意圖,已知旗桿的位置是,實驗室的位置是.

(1)請你畫出該學校平面示意圖所在的坐標系;(2)辦公樓的位置是,教學樓的位置是,在圖中標出辦公樓和教學樓的位置;(3)寫出食堂、圖書館的坐標.20.(本題6分)如圖,在平面直角坐標系中,的各頂點坐標為,,.

(1)在圖中作和關(guān)于軸對稱(2)在圖中作和關(guān)于軸對稱.21.(本題9分)如圖,在平面直角坐標系中,已知,,,是三角形ABC的邊AC上的一點,把三角形ABC經(jīng)過平移后得三角形DEF,點P的對應點為.(1)寫出D,E,F(xiàn)三點的坐標;(2)畫出三角形DEF;(3)求三角形DEF的面積.22.(本題8分)已知點A(-3,0),B(1,0).(1)在y軸上找一點C,使之滿足S△ABC=6,求點C的坐標;(2)在y軸上找一點D,使AD=AB,求點D的坐標.23.(本題6分)已知點,根據(jù)下列條件,求出點A的坐標.(1)點A在y軸上;(2)點A到x軸的距離為24.(本題10分)在平面直角坐標系中,A(﹣4,0),點C是y軸正半軸上的一點,且∠ACB=90°,AC=BC(1)如圖①,若點B在第四象限,C(0,2),求點B的坐標;(2)如圖②,若點B在第二象限,以OC為直角邊在第一象限作等腰Rt△COF,連接BF,交y軸于點M,求CM的長.25.(本題14分)在平面直角坐標系中,對于任意兩點與的“識別距離”,給出如下定義:若,則點與點的“識別距離”為;若,則與點的“識別距離”為;(1)已知點,為軸上的動點,①若點與的“識別距離”為3,寫出滿足條件的點的坐標.②直接寫出點與點的“識別距離”的最小值.(2)已知點坐標為,,寫出點與點的“識別距離”的最小值.及相應的點坐標.26.(本題15分)如圖,在平面直角坐標中,點,滿足.

(1)直接寫出結(jié)果:點A坐標為_,點B坐標為_;(2)點C是線段上一點,滿足,點E是第四象限中一點,連接,使得,點F是線段上一動點,連接交于點D,當點F在線段上運動時,是否為定值?如果是,請求出該值;如果不是,請說明理由;(3)已知坐標軸上有兩動點P、Q同時出發(fā),P點從A點出發(fā)以每秒1個單位長度的速度向下勻速移動,Q點從O點出發(fā)以每秒2個單位長度的速度向右勻速移動,點是線段上一點,設運動時間為秒,當時,①求此時t的值;②此時是否存在點,使得,若存在,請直接寫出H的坐標;若不存在,請說明理由.27.(本題10分)【初步探究】(1)如圖1,在四邊形中,,點是邊上一點,,,連接、.判斷的形狀,并說明理由.【拓展應用】(2)如圖2,在平面直角坐標系中,已知點,點,點在第四象限內(nèi),若是等腰直角三角形,則點的坐標是_.(3)如圖3,在平面直角坐標系中,已知點,點是軸上的動點,線段繞若點按逆時針方向旋轉(zhuǎn)至線段,,連接、,則的最小值是_.

第五章平面直角坐標系(單元重點綜合測試)答案全解全析一、單選題(每題3分,共24分)1.如果用表示張先生的座位號:22排5號,那么王女士的座位號25排12號表示為()A. B. C. D.【答案】A【分析】根據(jù)坐標確定位置的方法,結(jié)合題目中的22排5號表示為,即可獲得答案.【詳解】解:根據(jù)題意,用表示張先生的座位號:22排5號,則王女士的座位號25排12號表示為.故選:A.2.在平面直角坐標系中,點所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B【分析】根據(jù)平面直角坐標系中各個象限的點的坐標的符號特點,即可求解.【詳解】解:點所在的象限是第二象限.故選:B3.已知點和點是坐標平面內(nèi)的兩個點,且它們關(guān)于直線對稱,則平面內(nèi)點的坐標為()A. B. C. D.【答案】B【分析】根據(jù)軸對稱的定義列式求出點B的橫坐標即可解答.【詳解】解:設點B的橫坐標為x,∵點與點B關(guān)于直線對稱,∴,解得,∵點A、B關(guān)于直線對稱,∴點A、B的縱坐標相等,∴點.故選:B.4.若點的坐標是,點到軸的距離是()A.3 B.1 C. D.【答案】B【分析】根據(jù)點的坐標是,那么點到軸的距離為1,點到軸的距離為,即可作答.【詳解】解:∵點的坐標是,∴點到軸的距離為1,故選:B.5.如圖,在平面直角坐標系中,點,,以為直角邊構(gòu)造等腰直角,,過點作軸于,則點的坐標為()

A. B. C. D.【答案】D【分析】根據(jù)題意,證明,可得,即可求解.【詳解】解:∵,,∴,∵是等腰直角三角形,∴,,∵,∴∴,∴,∴,∴,∴,故選:D.6.已知兩點和,下列說法正確的有()個①直線軸;

②A、B兩點間的距離③三角形的面積

④線段的中點坐標是A.1個 B.2個 C.3個 D.4個【答案】D【分析】根據(jù)兩點和的縱坐標都是2,則直線軸,即可判斷①;那么A、B兩點間的距離,即可判斷②;那么,即可判斷③;線段的中點坐標是,化簡即可判斷④.【詳解】解:∵兩點和的縱坐標都是2,∴直線軸,故①是正確的;∵兩點和的橫坐標分別是和6,且直線軸,∴A、B兩點間的距離,故②是正確的;∴,故③是正確的;∵,∴線段的中點坐標是,故④是正確的;正確的是①②③④,故選:D.7.已知點在第四象限,則m的取值范圍在數(shù)軸上表示正確的是()A.

B.

C.

D.

【答案】B【分析】根據(jù)第四象限內(nèi)點的坐標特點列出關(guān)于的不等式組,求出的取值范圍,并在數(shù)軸上表示出來即可.【詳解】解:點在第四象限,,由①得,;由②得,,在數(shù)軸上表示為:

故選:B.8.如圖,一只小螞蟻在平面直角坐標系中按圖中路線進行“爬樓梯”運動,第1次它從原點運動到點,第2次運動到點,第3次運動到點……按這樣的運動規(guī)律,經(jīng)過第2023次運動后,小螞蟻的坐標是()

A. B. C. D.【答案】C【分析】分別找到橫坐標和縱坐標的變化規(guī)律,再算出2023與2的商和余數(shù),繼而得解.【詳解】解:第1次:,第2次:,第3次:,第4次:,第5次:,…,則橫坐標是從1開始的正整數(shù),每個正整數(shù)出現(xiàn)2次,縱坐標是從0開始的正整數(shù),其中只有0出現(xiàn)1次,其余數(shù)出現(xiàn)2次,則,∴第2023次的坐標是:,故選C.填空題(每題3分,共30分)9.如圖是人民公園的部分平面示意圖,為準確表示地理位置,可以建立坐標系用坐標表示地理位置,若牡丹園的坐標是,南門的坐標是,則湖心亭的坐標為____________.

【答案】【分析】根據(jù)牡丹園的坐標和南門的坐標找到原點,建立坐標系,進而求解.【詳解】解:根據(jù)題意建立坐標系如圖所示:所以湖心亭的坐標為;故答案為:.

10.如圖,等腰,則點坐標為________________.

【答案】【分析】先根據(jù)點A、B的坐標求出、的長度,過點C作軸交x軸于點D,根據(jù)題意利用證明,求得,,再根據(jù)點C在第二象限寫出點的坐標即可.【詳解】解:過點C作于點D,

∵,,∴,,∵是等腰直角三角形,∴,,∴,∵,∴,∴,在和∴∴,,∴,∵點C在第二象限,∴點C的坐標是.故答案為:.11.已知點,在y軸上有一點B,點B與點M的距離為5,則點B的坐標為__________.【答案】或.【分析】設點B的坐標為,根據(jù)兩點之間距離公式得出,求出m的值即可.【詳解】解:設點B的坐標為,根據(jù)題意得:,解得:或,∴點B的坐標為或.故答案為:或.12.已知點P的坐標為,則點P到x軸的距離為_____.【答案】【分析】根據(jù)點到軸的距離等于其縱坐標的絕對值即可得.【詳解】解:點到軸的距離為,故答案為:2.13.已知點在y軸上,則的值為_______________.【答案】1【分析】直接利用軸上點的坐標特點得出,進而得出答案.【詳解】解:點在軸上,,解得:.故答案為:1.14.在平面直角坐標系中,點,點,且軸,則____.【答案】【分析】根據(jù)平行于y軸的直線上的點橫坐標相同求出m的值即可【詳解】解:∵,點,且軸,∴,解得:,故答案為:.15.如圖,在平面直角坐標系中,將線段平移使得一個端點與點重合,已知點,,,則線段平移后另一個端點的坐標為__________.

【答案】或【分析】分兩種情況討論:如圖,當平移到,當平移到,再確定平移方式,從而可得答案.【詳解】解:如圖,當平移到,

∵,,∴,即,當平移到,∵,,∴,即;∴平移后另外一個端點坐標為:或.故答案為:或16.如圖,等邊三角形的頂點,規(guī)定把等邊三角形先沿x軸翻折,再向左平移1個單位長度為一次變換.如果這樣連續(xù)經(jīng)過2021次變換后,等邊三角形的頂點A的坐標為_____.

【答案】【分析】根據(jù)軸對稱判斷出點A變換后在x軸下方,然后求出點A縱坐標,再根據(jù)平移的距離求出點A變換后的橫坐標,最后寫出坐標即可.【詳解】解:根據(jù)題意得:經(jīng)過1次變換后,頂點A的坐標為,經(jīng)過2次變換后,頂點A的坐標為,經(jīng)過3次變換后,頂點A的坐標為,經(jīng)過4次變換后,頂點A的坐標為,……由此發(fā)現(xiàn),第2021次變換后的三角形在x軸下方,點A的縱坐標為,橫坐標為,所以,連續(xù)經(jīng)過2021次變換后,等邊三角形的頂點A的坐標為,故答案為:.17.在平面直角坐標系中,點的坐標,點是軸上的一個動點,當線段的長最短時,點的坐標為______.【答案】【分析】根據(jù)題意可得:當軸時,最小,此時點、的橫坐標相同,即可求解.【詳解】解∶根據(jù)題意得:當軸時,最小,此時點、的橫坐標相同,∵點的坐標為,點是軸上的一個動點,∴當線段的長最小時,點的坐標為.故答案為:18.如圖所示放置的都是邊長為2的等邊三角形,邊在軸上,且點,都在同一直線上,則的坐標是__________.

【答案】【分析】過點作,交于點,根據(jù)等邊三角形的性質(zhì),求得點的坐標,從而得到的坐標,同理得出坐標,根據(jù)規(guī)律,即可解答.【詳解】解:如圖,過點作,交于點,是邊長為2的等邊三角形,,,,,,點,都在同一直線上,,,的橫坐標為,,同理可得,,,,故答案為:.

三、解答題(一共9題,共86分)19.(本題8分)為讓每個農(nóng)村孩子都能上學,國家實施了“農(nóng)村中小學寄宿制學校建設工程”,如圖是某寄宿制學校的平面示意圖,已知旗桿的位置是,實驗室的位置是.

(1)請你畫出該學校平面示意圖所在的坐標系;(2)辦公樓的位置是,教學樓的位置是,在圖中標出辦公樓和教學樓的位置;(3)寫出食堂、圖書館的坐標.【答案】(1)見解析(2)見解析(3)食堂,圖書館【分析】(1)根據(jù)已知點的坐標找到坐標原點,建立直角坐標系即可;(2)在建立的直角坐標系中標出辦公樓和教學樓的位置即可;(3)在建立的直角坐標系中找到食堂、圖書館的位置,寫出坐標即可.【詳解】(1)該學校平面示意圖所在的坐標系如圖所示,

(2)辦公樓和教學樓的位置如圖所示,(3)食堂、圖書館的坐標分別為、.20.(本題6分)如圖,在平面直角坐標系中,的各頂點坐標為,,.

(1)在圖中作和關(guān)于軸對稱(2)在圖中作和關(guān)于軸對稱.【答案】(1)作圖見詳解(2)作圖見詳解【分析】(1)根據(jù)軸對稱圖形的定義及作圖方法即可求解;(2)根據(jù)軸對稱圖形的定義及作圖方法即可求解.【詳解】(1)解:如圖所示,與關(guān)于軸對稱,

∴即為所求圖形.(2)解:如圖所示,和關(guān)于軸對稱,

∴即為所求圖形.21.(本題9分)如圖,在平面直角坐標系中,已知,,,是三角形ABC的邊AC上的一點,把三角形ABC經(jīng)過平移后得三角形DEF,點P的對應點為.(1)寫出D,E,F(xiàn)三點的坐標;(2)畫出三角形DEF;(3)求三角形DEF的面積.【答案】(1),,;(2)見解析;(3)7【分析】(1)直接利用點平移變化規(guī)律得出答案;(2)直接利用各對應點位置進而得出答案;(3)利用三角形所在矩形面積減去周圍三角形面積進而得出答案.【詳解】解:(1)為上的點,平移后表示向左平移1個單位,再向下平移3個單位;,,;(2)如圖所示:即為所求;(3).22.(本題8分)已知點A(-3,0),B(1,0).(1)在y軸上找一點C,使之滿足S△ABC=6,求點C的坐標;(2)在y軸上找一點D,使AD=AB,求點D的坐標.【答案】(1)點C的坐標為(0,3)或(0,-3);(2)D(0,)或(0,-).【分析】(1)由A(-3,0),B(1,0),可得AB=4,再由S△ABC=6,可得△ABC邊AB上的高為3,即可得到點C的縱坐標,由此即可求得點C的坐標;(2)由題意可知AD=AB=4,AO=3,∠AOD=90°根據(jù)勾股定理求得OD=,由此即可求得點D的坐標.【詳解】(1)∵A(-3,0),B(1,0).∴AB=4,∵S△ABC=6,∴△ABC邊AB上的高為3,即點C的縱坐標,∴點C的坐標為(0,3)或(0,-3).(2)∵A(-3,0),B(1,0),∴AB=4,AO=3.又∠AOD=90°,∴OD==,∴D(0,)或(0,-).23.(本題6分)已知點,根據(jù)下列條件,求出點A的坐標.(1)點A在y軸上;(2)點A到x軸的距離為【答案】(1)(2)或【分析】(1)根據(jù)y上點的橫坐標為0列方程求出a的值,再求解即可.(2)根據(jù)點P到x軸的距離列出絕對值方程求解a的值,再求解即可.【詳解】(1)解:點在y上,,解得,故,則.(2)點A到x軸的距離為5,,則:或,解得或,或,點A的坐標為或.24.(本題10分)在平面直角坐標系中,A(﹣4,0),點C是y軸正半軸上的一點,且∠ACB=90°,AC=BC(1)如圖①,若點B在第四象限,C(0,2),求點B的坐標;(2)如圖②,若點B在第二象限,以OC為直角邊在第一象限作等腰Rt△COF,連接BF,交y軸于點M,求CM的長.【答案】(1)B點坐標(2,﹣2);(2)2【分析】(1)作BD⊥CO,根據(jù)同角的余角相等可得∠BCD=∠CAO,然后證明ACO≌△CBD,根據(jù)全等三角形對應邊相等的性質(zhì)即可解題;(2)作BG⊥y軸,根據(jù)同角的余角相等可得∠CAO=∠BCG,然后證明△CAO≌△BCG,可得CG=AO=4,BG=OC,進而得到CF=BG,然后再證明△BGM≌△FCM,根據(jù)全等三角形的性質(zhì)定理即可得到結(jié)論.【詳解】(1)作BD⊥CO,∵∠ACB=90°,∴∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO,在△ACO和△CBD中,,∴△ACO≌△CBD(AAS),∴CD=AO=4,BD=CO=2,∴OD=2,∴B點坐標為(2,﹣2);(3)作BG⊥y軸,∵∠CAO+∠OCA=90°,∠OCA+∠BCG=90°,∴∠CAO=∠BCG,在△CAO和△BCG中,,∴△CAO≌△BCG(AAS),∴CG=AO=4,BG=OC,∵OC=CF,∴CF=BG,在△BGM和△FCM中,,∴△BGM≌△FCM(AAS),∴MC=MG,∴MC=CG=2.25.(本題14分)在平面直角坐標系中,對于任意兩點與的“識別距離”,給出如下定義:若,則點與點的“識別距離”為;若,則與點的“識別距離”為;(1)已知點,為軸上的動點,①若點與的“識別距離”為3,寫出滿足條件的點的坐標.②直接寫出點與點的“識別距離”的最小值.(2)已知點坐標為,,寫出點與點的“識別距離”的最小值.及相應的點坐標.【答案】(1)①或;②2;(2),.【分析】(1)①設點B的坐標為,根據(jù)“識別距離”的定義可得,化簡絕對值即可得;②先求出時a的值,再根據(jù)“識別距離”的定義分情況討論,然后找出“識別距離”中的最小值即可;(2)參考②,先求出時m的值,再根據(jù)“識別距離”的定義分情況討論,然后找出“識別距離”中的最小值即可.【詳解】(1)①設點B的坐標為點與的“識別距離”為解得則點B的坐標為或;②由得:因此,分以下兩種情況:當時,則點與點的“識別距離”為當或時,則點與點的“識別距離”為綜上,點與點的“識別距離”大于或等于2故點與點的“識別距離”的最小值為2;(2)由得:或解得或因此,分以下三種情況:當時,則點與點的“識別距離”為此時當時,則點與點的“識別距離”為當時,則點與點的“識別距離”為由此可知,點與點的“識別距離”的最小值為此時,則點C的坐標為.26.(本題15分)如圖,在平面直角坐標中,點,滿足.

(1)直接寫出結(jié)果:點A坐標為_,點B坐標為_;(2)點C是線段上一點,滿足,點E是第四象限中一點,連接,使得,點F是線段上一動點,連接交于點D,當點F在線段上運動時,是否為定值?如果是,請求出該值;如果不是,請說明理由;(3)已知坐標軸上有兩動點P、Q同時出發(fā),P點從A點出發(fā)以每秒1個單位長度的速度向下勻速移動,Q點從O點出發(fā)以每秒2個單位長度的速度向右勻速移動,點是線段上一點,設運動時間為秒,當時,①求此時t的值;②此時是否存在點,使得,若存在,請直接寫出H的坐標;若不存在,請說明理由.【答案】(1),(2)是,2(3)①或4;②存在,,,,【分析】(1)利用非負數(shù)的性質(zhì)即可解決問題;(2)過D做,根據(jù)平行線的性質(zhì)及已知,得,同理可證,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論