版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
魯教版八年級(jí)上第五章平行四邊形1平行四邊形的性質(zhì)第3課時(shí)平行線間的距離01基礎(chǔ)題02綜合應(yīng)用題03創(chuàng)新拓展題目
錄CONTENTS練點(diǎn)1平行線間的距離
1.
如圖,若直線
m
∥
n
,則可以表示平行線
m
與
n
之間的距
離的是(
B
)A.
線段
AB
的長B.
線段
AC
的長C.
線段
AD
的長D.
線段
DE
的長B12345678910111213142.
[2024·泰安期末]如圖,直線
a
∥
b
,且
a
,
b
之間相距4
cm,點(diǎn)
P
是直線
a
上一定點(diǎn),點(diǎn)
Q
在直線
b
上運(yùn)動(dòng),則在點(diǎn)
Q
的運(yùn)動(dòng)過程中,線段
PQ
的最小值是
cm.4
1234567891011121314練點(diǎn)2平行線間的平行線段相等
3.
如圖,已知
l1∥
l2,
AB
∥
CD
,
CE
⊥
l2,
FG
⊥
l2,下列
說法錯(cuò)誤的是(
C
)A.
l1與
l2之間的距離是線段
FG
的長度B.
CE
=
FG
C.
線段
CD
的長度就是
l1與
l2兩條平行線間的
距離D.
AC
=
BD
C1234567891011121314練點(diǎn)3利用平行線間的距離計(jì)算面積
4.
[母題·教材P126想一想]如圖,已知
l1∥
l2,那么下列式子
中不正確的是(
D
)D12345678910111213145.
[情境題·生活應(yīng)用]如圖,某廣場上有一個(gè)平行四邊形花壇
ABCD
,點(diǎn)
P
是邊
AB
上一點(diǎn),連接
DP
,
CP
,然后種植
3種顏色的花卉,其種植面積如圖所示,則(
A
)A.
S3=
S1+
S2B.
S3>
S1+
S2C.
S3<
S1+
S21234567891011121314【點(diǎn)撥】
∵平行四邊形的對(duì)邊相等,∴
CD
=
AB
=
AP
+
BP
,∴
S3=
S1+
S2.A【答案】1234567891011121314糾易錯(cuò)不注意分情況討論,造成漏解
6.
[2024·青島嶗山區(qū)月考]已知直線
a
,
b
,
c
互相平行,直
線
a
與
b
之間的距離是3
cm,直線
b
與
c
之間的距離是8
cm,那么直線
a
與
c
之間的距離是(
C
)A.5
cmB.11
cmC.11
cm或5
cmD.
無法確定1234567891011121314當(dāng)直線
b
在直線
a
,
c
之間時(shí),直線
a
與
c
的距離是3+8=11(cm);當(dāng)直線
c
在直線
a
,
b
之間時(shí),直線
a
與
c
的距離是8-3=5(cm).【點(diǎn)撥】分兩種情況:C【答案】12345678910111213147.
[2024·煙臺(tái)期中]如圖,直線
a
∥
b
∥
c
,且
a
,
b
之間的距
離為1,△
ABC
和△
CDE
是兩塊全等的直角三角形紙
板,其中∠
ABC
=∠
CDE
=90°,∠
BAC
=∠
DCE
=
30°,它們的頂點(diǎn)都在平行線上,則
b
,
c
之間的距離是
(
C
)A.1D.21234567891011121314【點(diǎn)撥】∵
a
,
b
之間的距離為1,∠
BAC
=30°,
∵△
ABC
和△
CDE
是兩塊全等的直角三角形紙板,
∠
BAC
=∠
DCE
,
C【答案】12345678910111213148.
如圖,
AB
∥
DC
,
ED
∥
BC
,
AE
∥
BD
,那么圖中和
△
ABD
面積相等的三角形(不包括△
ABD
)有(
B
)A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)1234567891011121314【點(diǎn)撥】∵
AB
∥
DC
,∴△
ABC
與△
ABD
的面積相等.∵
AE
∥
BD
,∴△
BED
與△
ABD
的面積相等.∵
ED
∥
BC
,找不到與△
ABD
等底等高的三角形,∴和△
ABD
的面積相等的三角形有△
ABC
,△
BED
,共2個(gè).B【答案】12345678910111213149.
[2023·青島月考]如圖,從△
ABC
各頂點(diǎn)作平行線
AD
∥
EB
∥
FC
,平行線與各頂點(diǎn)的對(duì)邊或?qū)呇娱L線相交于
D
,
E
,
F
,連接
EF
,
DE
,
DF
.
若△
ABC
的面積為
1,則△
DEF
的面積為(
D
)A.3
D.21234567891011121314【點(diǎn)撥】∵
AD
∥
BE
,
AD
∥
FC
,
FC
∥
BE
,∴△
ADE
和△
ABD
在底邊
AD
上的高相等,△
ADF
和△
ADC
在底邊
AD
上的高相等,∴△
BEF
和△
BEC
在底邊
BE
上的高相等,∴
S△
ADE
=
S△
ABD
,
S△
ADF
=
S△
ADC
,
S△
BEF
=
S△
BEC
,1234567891011121314∴
S△
AEF
=
S△
BEF
-
S△
ABE
=
S△
BEC
-
S△
ABE
=
S△ABC
,∴
S△
DEF
=
S△
ADE
+
S△
ADF
+
S△
AEF
=
S△
ABD
+
S△
ADC
+
S△
ABC
=2
S△
ABC
,即
S△
DEF
=2
S△
ABC
.
∵
S△
ABC
=1,∴
S△
DEF
=2.【答案】D123456789101112131410.
如圖,在?
ABCD
中,過對(duì)角線
BD
上一點(diǎn)
P
作
EF
∥
BC
,
GH
∥
AB
,且
CG
=2
BG
,
S△
BPG
=1,則
S四邊形
AEPH
=
?.4
1234567891011121314【點(diǎn)撥】∵四邊形
ABCD
是平行四邊形,且
EF
∥
BC
,
GH
∥
AB
,∴易知四邊形
HPFD
,
BEPG
,
AEPH
,
CFPG
為
平行四邊形,
S△
ABD
=
S△
CDB
,∴
S△
PEB
=
S△
BGP
,
S△
PHD
=
S△
DFP
,1234567891011121314∴
S△
ABD
-
S△
PEB
-
S△
PHD
=
S△
CDB
-
S△
BGP
-
S△
DFP
,即
S四邊形
AEPH
=
S四邊形
PFCG
.
∵
S△
BPG
=1,∴
S四邊形
BEPG
=2,∵
CG
=2
BG
,∴
S四邊形
AEPH
=
S四邊形
PFCG
=4.123456789101112131411.
如圖,在?
ABCD
中,對(duì)角線
BD
=8
cm,
AE
⊥
BD
,垂
足為
E
,且
AE
=3
cm,
BC
=4
cm,則
AD
與
BC
之間
的距離為
?.6
cm
1234567891011121314【點(diǎn)撥】∵四邊形
ABCD
為平行四邊形,∴
AB
=
CD
,
AD
=
BC
.
∴△
ABD
≌△
CDB
(SSS).∵
AE
⊥
BD
,
AE
=3
cm,
BD
=8
cm,1234567891011121314
∴
S?
ABCD
=2
S△
ABD
=24
cm2.設(shè)
AD
與
BC
之間的距離為
h
cm,∵
BC
=4
cm,∴
S?
ABCD
=
BC
·
h
=4
h
cm2,∴4
h
=24,解得
h
=6.∴
AD
與
BC
之間的距離為6
cm.123456789101112131412.
如圖,已知
AD
∥
BC
,∠
ABC
的平分線
BP
與∠
BAD
的
平分線
AP
相交于點(diǎn)
P
,作
PE
⊥
AB
于點(diǎn)
E
.
若
PE
=2,
求兩平行線
AD
與
BC
間的距離.1234567891011121314【解】過點(diǎn)
P
作
PM
⊥
AD
于點(diǎn)
M
,延長
MP
交
BC
于點(diǎn)
N
,如圖所示.∵
PM
⊥
AD
,
AD
∥
BC
,∴
PN
⊥
BC
.
∵
AP
平分∠
BAD
,
PE
⊥
AB
,
PM
⊥
AD
,∴
PM
=
PE
=2.∵
BP
平分∠
ABC
,
PE
⊥
AB
,
PN
⊥
BC
,∴
PN
=
PE
=2.∴
MN
=
PM
+
PN
=2+2=4,即兩平行線
AD
與
BC
間的距離為4.123456789101112131413.
如圖,在四邊形
ABCD
中,
AD
∥
BC
,連接
AC
,點(diǎn)
E
在
BC
邊上,點(diǎn)
F
在
AB
邊上,連接
AE
,
EF
,且∠
DAC
=∠
BEF
.
(1)求證:
EF
∥
AC
;【證明】∵
AD
∥
BC
,∴∠
DAC
=∠
ACB
.
∵∠
DAC
=∠
BEF
,∴∠
BEF
=∠
ACB
,∴
EF
∥
AC
.
1234567891011121314(2)若
AB
=3,
AC
=4,
BC
=5,求
AD
與
BC
之間
的距離;
1234567891011121314(3)若
AB
=6,
AE
=5,
AC
=8,試求點(diǎn)
A
到直線
BC
的
距離的取值范圍.【解】根據(jù)“垂線段最短”,得點(diǎn)
A
到直線
BC
的距離的取值范圍為大于0且小于或等于5.123456789101112131414.
如圖①,已知直線
m
∥
n
,點(diǎn)
A
,
B
在直線
n
上,點(diǎn)
C
,
P
在直線
m
上;(1)寫出圖①中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 策劃公司前臺(tái)工作總結(jié)
- 運(yùn)輸物流行業(yè)顧問工作總結(jié)
- 2024新年寄語匯編(32篇)
- 制冷技術(shù)轉(zhuǎn)讓協(xié)議書(2篇)
- 創(chuàng)業(yè)合作投資協(xié)議書(2篇)
- 2024年計(jì)算機(jī)專業(yè)實(shí)習(xí)心得體會(huì)
- 易錯(cuò)點(diǎn)08 中國近代史時(shí)間問題-備戰(zhàn)2023年中考?xì)v史考試易錯(cuò)題(解析版)
- 地理中國的世界遺產(chǎn)課件中圖版選修
- 2025屆陜西省咸陽市武功縣中考生物全真模擬試題含解析
- 《公共政策過程》課件
- 房地產(chǎn)估計(jì)第八章成本法練習(xí)題參考
- 2023年廣東羅浮山旅游集團(tuán)有限公司招聘筆試題庫及答案解析
- 《社會(huì)主義核心價(jià)值觀》優(yōu)秀課件
- DB11-T1835-2021 給水排水管道工程施工技術(shù)規(guī)程高清最新版
- 《妊娠期糖尿病患者個(gè)案護(hù)理體會(huì)(論文)3500字》
- 解剖篇2-1內(nèi)臟系統(tǒng)消化呼吸生理學(xué)
- 《小學(xué)生錯(cuò)別字原因及對(duì)策研究(論文)》
- 便攜式氣體檢測報(bào)警儀管理制度
- 酒店安全的管理制度
- (大潔王)化學(xué)品安全技術(shù)說明書
- 2022年科學(xué)道德與學(xué)術(shù)規(guī)范知識(shí)競賽決賽題庫(含答案)
評(píng)論
0/150
提交評(píng)論