版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽定遠(yuǎn)啟明中學(xué)2024屆高三第一次模擬測試數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,若對,且,使得,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.已知實(shí)數(shù)集,集合,集合,則()A. B. C. D.3.《算數(shù)書》竹簡于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長與高,計(jì)算其體積的近似公式.它實(shí)際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.4.下列函數(shù)中,在定義域上單調(diào)遞增,且值域?yàn)榈氖牵ǎ〢. B. C. D.5.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.6.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.12807.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.8.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.9.將函數(shù)的圖像向左平移個單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.10.已知拋物線的焦點(diǎn)為,若拋物線上的點(diǎn)關(guān)于直線對稱的點(diǎn)恰好在射線上,則直線被截得的弦長為()A. B. C. D.11.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點(diǎn)在四棱錐的外接球面上運(yùn)動,記點(diǎn)到平面的距離為,若平面平面,則的最大值為()A. B.C. D.12.已知定義在上的函數(shù)在區(qū)間上單調(diào)遞增,且的圖象關(guān)于對稱,若實(shí)數(shù)滿足,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術(shù)》卷5《商功》記載一個問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術(shù)曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),則由此可推得圓周率的取值為________.14.若函數(shù)恒成立,則實(shí)數(shù)的取值范圍是_____.15.已知,則_____16.已知數(shù)列滿足,且,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.其中每一級過濾都由核心部件濾芯來實(shí)現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨(dú)購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個一級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個二級過濾器更換的濾芯個數(shù)制成的條形圖.表1:一級濾芯更換頻數(shù)分布表一級濾芯更換的個數(shù)89頻數(shù)6040圖2:二級濾芯更換頻數(shù)條形圖以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.18.(12分)已知橢圓:(),與軸負(fù)半軸交于,離心率.(1)求橢圓的方程;(2)設(shè)直線:與橢圓交于,兩點(diǎn),連接,并延長交直線于,兩點(diǎn),已知,求證:直線恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).19.(12分)在中,角、、所對的邊分別為、、,且.(1)求角的大??;(2)若,的面積為,求及的值.20.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為(α為參數(shù)).以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,點(diǎn)P為曲線C上的動點(diǎn),求點(diǎn)P到直線l距離的最大值.21.(12分)移動支付(支付寶及微信支付)已經(jīng)漸漸成為人們購物消費(fèi)的一種支付方式,為調(diào)查市民使用移動支付的年齡結(jié)構(gòu),隨機(jī)對100位市民做問卷調(diào)查得到列聯(lián)表如下:(1)將上列聯(lián)表補(bǔ)充完整,并請說明在犯錯誤的概率不超過0.01的前提下,認(rèn)為支付方式與年齡是否有關(guān)?(2)在使用移動支付的人群中采用分層抽樣的方式抽取10人做進(jìn)一步的問卷調(diào)查,從這10人隨機(jī)中選出3人頒發(fā)參與獎勵,設(shè)年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.(參考公式:(其中)22.(10分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點(diǎn),SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
先求出的值域,再利用導(dǎo)數(shù)討論函數(shù)在區(qū)間上的單調(diào)性,結(jié)合函數(shù)值域,由方程有兩個根求參數(shù)范圍即可.【詳解】因?yàn)?,故,?dāng)時,,故在區(qū)間上單調(diào)遞減;當(dāng)時,,故在區(qū)間上單調(diào)遞增;當(dāng)時,令,解得,故在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.又,且當(dāng)趨近于零時,趨近于正無窮;對函數(shù),當(dāng)時,;根據(jù)題意,對,且,使得成立,只需,即可得,解得.故選:D.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究由方程根的個數(shù)求參數(shù)范圍的問題,涉及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)值域的問題,屬綜合困難題.2、A【解析】
可得集合,求出補(bǔ)集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點(diǎn)睛】本題考查了集合的補(bǔ)集和交集的混合運(yùn)算,屬于基礎(chǔ)題.3、C【解析】
將圓錐的體積用兩種方式表達(dá),即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點(diǎn)睛】本題利用古代數(shù)學(xué)問題考查圓錐體積計(jì)算的實(shí)際應(yīng)用,考查學(xué)生的運(yùn)算求解能力、創(chuàng)新能力.4、B【解析】
分別作出各個選項(xiàng)中的函數(shù)的圖象,根據(jù)圖象觀察可得結(jié)果.【詳解】對于,圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤;對于,的圖象如下圖所示:則在定義域上單調(diào)遞增,且值域?yàn)?,正確;對于,的圖象如下圖所示:則函數(shù)單調(diào)遞增,但值域?yàn)椋e誤;對于,的圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤.故選:.【點(diǎn)睛】本題考查函數(shù)單調(diào)性和值域的判斷問題,屬于基礎(chǔ)題.5、C【解析】
設(shè)M,N,P分別為和的中點(diǎn),得出的夾角為MN和NP夾角或其補(bǔ)角,根據(jù)中位線定理,結(jié)合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據(jù)題意畫出圖形:設(shè)M,N,P分別為和的中點(diǎn),則的夾角為MN和NP夾角或其補(bǔ)角可知,.作BC中點(diǎn)Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【點(diǎn)睛】此題考查異面直線夾角,關(guān)鍵點(diǎn)通過平移將異面直線夾角轉(zhuǎn)化為同一平面內(nèi)的夾角,屬于較易題目.6、A【解析】
根據(jù)二項(xiàng)式展開式的公式得到具體為:化簡求值即可.【詳解】根據(jù)二項(xiàng)式的展開式得到可以第一個括號里出項(xiàng),第二個括號里出項(xiàng),或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【點(diǎn)睛】求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略:(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).7、B【解析】
每個式子的值依次構(gòu)成一個數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計(jì)算.【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,,,,,,,構(gòu)成一個數(shù)列,可得數(shù)列滿足,則,,.故選:B.【點(diǎn)睛】本題主要考查歸納推理,解題關(guān)鍵是通過數(shù)列的項(xiàng)歸納出遞推關(guān)系,從而可確定數(shù)列的一些項(xiàng).8、C【解析】
根據(jù)三棱柱的展開圖的可能情況選出選項(xiàng).【詳解】由圖可知,ABD選項(xiàng)可以圍成三棱柱,C選項(xiàng)不是三棱柱展開圖.故選:C【點(diǎn)睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎(chǔ)題.9、B【解析】
根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)進(jìn)行求解即可.【詳解】將函數(shù)的圖象向左平移個單位,得到,此時與函數(shù)的圖象重合,則,即,,當(dāng)時,取得最小值為,故選:.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關(guān)系求出解析式是解決本題的關(guān)鍵.10、B【解析】
由焦點(diǎn)得拋物線方程,設(shè)點(diǎn)的坐標(biāo)為,根據(jù)對稱可求出點(diǎn)的坐標(biāo),寫出直線方程,聯(lián)立拋物線求交點(diǎn),計(jì)算弦長即可.【詳解】拋物線的焦點(diǎn)為,則,即,設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設(shè)直線與拋物線的另一個交點(diǎn)為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),點(diǎn)關(guān)于直線對稱,屬于中檔題.11、A【解析】
根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點(diǎn)的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點(diǎn),則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設(shè)四棱錐的外接球半徑為,則,而,所以,故選:A.【點(diǎn)睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.12、C【解析】
根據(jù)題意,由函數(shù)的圖象變換分析可得函數(shù)為偶函數(shù),又由函數(shù)在區(qū)間上單調(diào)遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數(shù)的圖象向左平移個單位長度可得函數(shù)的圖象,由于函數(shù)的圖象關(guān)于直線對稱,則函數(shù)的圖象關(guān)于軸對稱,即函數(shù)為偶函數(shù),由,得,函數(shù)在區(qū)間上單調(diào)遞增,則,得,解得.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性與奇偶性解不等式,注意分析函數(shù)的奇偶性,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
根據(jù)圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),可得,進(jìn)而可求出的值【詳解】解:設(shè)圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點(diǎn)睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結(jié)合方程的思想即可求出結(jié)果.14、【解析】
若函數(shù)恒成立,即,求導(dǎo)得,在三種情況下,分別討論函數(shù)單調(diào)性,求出每種情況時的,解關(guān)于的不等式,再取并集,即得。【詳解】由題意得,只要即可,,當(dāng)時,令解得,令,解得,單調(diào)遞減,令,解得,單調(diào)遞增,故在時,有最小值,,若恒成立,則,解得;當(dāng)時,恒成立;當(dāng)時,,單調(diào)遞增,,不合題意,舍去.綜上,實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題考查恒成立條件下,求參數(shù)的取值范圍,是??碱}型。15、【解析】
化簡得,利用周期即可求出答案.【詳解】解:,∴函數(shù)的最小正周期為6,∴,,故答案為:.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.16、【解析】
數(shù)列滿足知,數(shù)列以3為公比的等比數(shù)列,再由已知結(jié)合等比數(shù)列的性質(zhì)求得的值即可.【詳解】,數(shù)列是以3為公比的等比數(shù)列,又,,.故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列定義,考查了對數(shù)的運(yùn)算性質(zhì),考查了等比數(shù)列的通項(xiàng)公式,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0.024;(2)分布列見解析,;(3)【解析】
(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16,則該套凈水系統(tǒng)中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,而由一級濾芯更換頻數(shù)分布表和二級濾芯更換頻數(shù)條形圖可知,一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級濾芯更換頻數(shù)條形圖可知,一個二級過濾器需要更換濾芯的個數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數(shù)學(xué)期望;(3)由,且,可知若,則,或若,則,再分別計(jì)算兩種情況下的所需總費(fèi)用的期望值比較大小即可.【詳解】(1)由題意知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16,則該套凈水系統(tǒng)中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,設(shè)“一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16”為事件,因?yàn)橐粋€一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,所以.(2)由柱狀圖知,一個二級過濾器需要更換濾芯的個數(shù)為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個).或用分?jǐn)?shù)表示也可以為89101112(個).(3)解法一:記表示該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用(單位:元)因?yàn)?,且?°若,則,(元);2°若,則,(元).因?yàn)?,故選擇方案:.解法二:記分別表示該客戶的凈水系統(tǒng)在使用期內(nèi)購買一級濾芯和二級濾芯所需費(fèi)用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統(tǒng)在使用期內(nèi)購買的各級濾芯所需總費(fèi)用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因?yàn)樗赃x擇方案:.【點(diǎn)睛】此題考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法及應(yīng)用,考查古典概型,考查運(yùn)算求解能力,屬于中檔題.18、(1)(2)證明見解析;定點(diǎn)坐標(biāo)為【解析】
(1)由條件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)由得,.又∴,同理又∴∴∴∴∴∴,此時滿足∴∴直線恒過定點(diǎn)【點(diǎn)睛】涉及橢圓的弦長、中點(diǎn)、距離等相關(guān)問題時,一般利用根與系數(shù)的關(guān)系采用“設(shè)而不求”“整體帶入”等解法.19、(1)(2);【解析】
(1)由代入中計(jì)算即可;(2)由余弦定理可得,所以,由,變形即可得到答案.【詳解】(1)因?yàn)?,可得:,∴,或(舍),∵,?(2)由余弦定理,得所以,故,又,所以,所以.【點(diǎn)睛】本題考查二倍角公式以及正余弦定理解三角形,考查學(xué)生的運(yùn)算求解能力,是一道容易題.20、(1),(2)【解析】
試題分析:利用將極坐標(biāo)方程化為直角坐標(biāo)方程:化簡為ρcosθ+ρsinθ=1,即為x+y=1.再利用點(diǎn)到直線距離公式得:設(shè)點(diǎn)P的坐標(biāo)為(2cosα,sinα),得P到直線l的距離試題解析:解:化簡為ρcosθ+ρsinθ=1,則直線l的直角坐標(biāo)方程為x+y=1.設(shè)點(diǎn)P的坐標(biāo)為(2cosα,sinα),得P到直線l的距離,dmax=.考點(diǎn):極坐標(biāo)方程化為直角坐標(biāo)方程,點(diǎn)到直線距離公式21、(1)列聯(lián)表見解析,在犯錯誤的概率不超過0.01的前提下,認(rèn)為支付方式與年齡有關(guān);(2)分布列見解析,期望為.【解析】
(1)根據(jù)題中所給的條件補(bǔ)全列聯(lián)表,根據(jù)列聯(lián)表求出觀測值,把觀測值同臨界值進(jìn)行比較,得到能在犯錯誤的概率不超過0.01的前提下,認(rèn)為支付方式與年齡有關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛東學(xué)院《微生物與發(fā)酵工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 2022年上海審計(jì)師(初級)《審計(jì)理論與實(shí)務(wù)》考試題庫(含典型題)
- 《心電圖的臨床應(yīng)用》課件
- 三年級科學(xué)上冊13風(fēng)教案冀教版
- 2021年消防工程師綜合能力模擬題及答案
- 《森林環(huán)境微生物》課件
- 《信息系統(tǒng)運(yùn)作》課件
- 2021年試驗(yàn)檢測師(含助理)-道路工程-集料試題
- 2021年度證券從業(yè)資格證券發(fā)行與承銷預(yù)熱階段綜合測試題(含答案)
- 國家安全線上教育課件
- 3.2《遵守規(guī)則》-教學(xué)設(shè)計(jì)2024-2025學(xué)年統(tǒng)編版道德與法治八年級上冊
- 拆除高空廣告牌的施工方案
- 天津市部分區(qū)2024-2025學(xué)年九年級上學(xué)期11月期中數(shù)學(xué)試題
- 全國職業(yè)院校技能大賽中職(大數(shù)據(jù)應(yīng)用與服務(wù)賽項(xiàng))考試題及答案
- 學(xué)校食堂從業(yè)人員培訓(xùn)制度
- 審計(jì)基礎(chǔ)知識培訓(xùn)
- DB43 873-2014 箱式暖腳器標(biāo)準(zhǔn)
- 【學(xué)易金卷】2023-2024學(xué)年四年級數(shù)學(xué)上冊期末全真模擬提高卷(三)(答題卡)(北師大版)
- 部編 2024版歷史七年級上冊期末(全冊)復(fù)習(xí)卷(后附答案及解析)
- 2024年煤礦安全管理人員(機(jī)電運(yùn)輸)考試題庫(濃縮500題)
- 山東省濟(jì)南市歷城區(qū)歷城第二中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析
評論
0/150
提交評論