版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023屆福建省福州市第十中學(xué)高三下學(xué)期數(shù)學(xué)試題4月開學(xué)考試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在區(qū)間上隨機取一個數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.112.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結(jié)論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值3.設(shè)點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.4.設(shè)非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件5.設(shè)α,β為兩個平面,則α∥β的充要條件是A.α內(nèi)有無數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面6.若,滿足約束條件,則的最大值是()A. B. C.13 D.7.已知是的共軛復(fù)數(shù),則()A. B. C. D.8.函數(shù)的圖象在點處的切線為,則在軸上的截距為()A. B. C. D.9.造紙術(shù)、印刷術(shù)、指南針、火藥被稱為中國古代四大發(fā)明,此說法最早由英國漢學(xué)家艾約瑟提出并為后來許多中國的歷史學(xué)家所繼承,普遍認為這四種發(fā)明對中國古代的政治,經(jīng)濟,文化的發(fā)展產(chǎn)生了巨大的推動作用.某小學(xué)三年級共有學(xué)生500名,隨機抽查100名學(xué)生并提問中國古代四大發(fā)明,能說出兩種發(fā)明的有45人,能說出3種及其以上發(fā)明的有32人,據(jù)此估計該校三級的500名學(xué)生中,對四大發(fā)明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人10.如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,11.設(shè)為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知矩形ABCD,AB=4,BC=3,以A,B為焦點,且過C,D兩點的雙曲線的離心率為____________.14.設(shè)等差數(shù)列的前項和為,若,,則數(shù)列的公差________,通項公式________.15.已知一組數(shù)據(jù),1,0,,的方差為10,則________16.若將函數(shù)的圖象沿軸向右平移個單位后所得的圖象與的圖象關(guān)于軸對稱,則的最小值為________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是遞增的等比數(shù)列,,且、、成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),,求數(shù)列的前項和.18.(12分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.19.(12分)如圖,在直棱柱中,底面為菱形,,,與相交于點,與相交于點.(1)求證:平面;(2)求直線與平面所成的角的正弦值.20.(12分)某市調(diào)硏機構(gòu)對該市工薪階層對“樓市限購令”態(tài)度進行調(diào)查,抽調(diào)了50名市民,他們月收入頻數(shù)分布表和對“樓市限購令”贊成人數(shù)如下表:月收入(單位:百元)頻數(shù)51055頻率0.10.20.10.1贊成人數(shù)4812521(1)若所抽調(diào)的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.(2)若從收入(單位:百元)在的被調(diào)查者中隨機選取2人進行追蹤調(diào)查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數(shù)學(xué)期望.(3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據(jù)表格數(shù)據(jù),判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結(jié)果.21.(12分)在本題中,我們把具體如下性質(zhì)的函數(shù)叫做區(qū)間上的閉函數(shù):①的定義域和值域都是;②在上是增函數(shù)或者減函數(shù).(1)若在區(qū)間上是閉函數(shù),求常數(shù)的值;(2)找出所有形如的函數(shù)(都是常數(shù)),使其在區(qū)間上是閉函數(shù).22.(10分)已知都是各項不為零的數(shù)列,且滿足其中是數(shù)列的前項和,是公差為的等差數(shù)列.(1)若數(shù)列是常數(shù)列,,,求數(shù)列的通項公式;(2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;(3)若(為常數(shù),),.求證:對任意的恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數(shù)列的通項公式,屬于基礎(chǔ)題目.2.D【解析】
A.通過線面的垂直關(guān)系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應(yīng)用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內(nèi).3.B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.4.C【解析】
利用數(shù)量積的定義可得,即可判斷出結(jié)論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【點睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查推理能力與計算能力,屬于基礎(chǔ)題.5.B【解析】
本題考查了空間兩個平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.6.C【解析】
由已知畫出可行域,利用目標函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內(nèi)的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.【點睛】本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合的數(shù)學(xué)思想以及運算求解能力,屬于基礎(chǔ)題.7.A【解析】
先利用復(fù)數(shù)的除法運算法則求出的值,再利用共軛復(fù)數(shù)的定義求出a+bi,從而確定a,b的值,求出a+b.【詳解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故選:A.【點睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.8.A【解析】
求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點睛】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點的縱坐標,因此截距有正有負,本題屬于基礎(chǔ)題.9.D【解析】
先求得名學(xué)生中,只能說出一種或一種也說不出的人數(shù),由此利用比例,求得名學(xué)生中對四大發(fā)明只能說出一種或一種也說不出的人數(shù).【詳解】在這100名學(xué)生中,只能說出一種或一種也說不出的有人,設(shè)對四大發(fā)明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點睛】本小題主要考查利用樣本估計總體,屬于基礎(chǔ)題.10.A【解析】
設(shè),取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設(shè),延長到,使得.,,,,則,由余弦定理得,,,又,,當平面平面時,,,排除B、D選項;因為,,此時,,當平面平面時,,,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題.11.A【解析】
利用復(fù)數(shù)的除法運算化簡,求得對應(yīng)的坐標,由此判斷對應(yīng)點所在象限.【詳解】,對應(yīng)的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復(fù)數(shù)除法運算,考查復(fù)數(shù)對應(yīng)點所在象限,屬于基礎(chǔ)題.12.B【解析】
由,,三點共線,可得,轉(zhuǎn)化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
根據(jù)為焦點,得;又求得,從而得到離心率.【詳解】為焦點在雙曲線上,則又本題正確結(jié)果:【點睛】本題考查利用雙曲線的定義求解雙曲線的離心率問題,屬于基礎(chǔ)題.14.2【解析】
直接利用等差數(shù)列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數(shù)列的基本計算,意在考查學(xué)生的計算能力.15.7或【解析】
依據(jù)方差公式列出方程,解出即可.【詳解】,1,0,,的平均數(shù)為,所以解得或.【點睛】本題主要考查方差公式的應(yīng)用.16.【解析】
由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖像的對稱性,求得的最小值.【詳解】解:將函數(shù)的圖象沿軸向右平移個單位長度,可得的圖象.根據(jù)圖象與的圖象關(guān)于軸對稱,可得,,,即時,的最小值為.故答案為:.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)圖像的對稱性,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)設(shè)等比數(shù)列的公比為,根據(jù)題中條件求出的值,結(jié)合等比數(shù)列的通項公式可得出數(shù)列的通項公式;(Ⅱ)求得,然后利用裂項相消法可求得.【詳解】(Ⅰ)設(shè)數(shù)列的公比為,由題意及,知.、、成等差數(shù)列成等差數(shù)列,,,即,解得或(舍去),.數(shù)列的通項公式為;(Ⅱ),.【點睛】本題考查等比數(shù)列通項的求解,同時也考查了裂項求和法,考查計算能力,屬于基礎(chǔ)題.18.;①;②.【解析】
根據(jù)題意列出方程組求解即可;①由原點為的垂心可得,軸,設(shè),則,,根據(jù)求出線段的長;②設(shè)中點為,直線與橢圓交于,兩點,為的重心,則,設(shè):,,,則,當斜率不存在時,則到直線的距離為1,,由,則,,,得出,根據(jù)求解即可.【詳解】解:設(shè)焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設(shè),則,,,解得:或,,不重合,故,,故;②設(shè)中點為,直線與橢圓交于,兩點,為的重心,則,當斜率不存在時,則到直線的距離為1;設(shè):,,,則,,則,則:,,代入式子得:,設(shè)到直線的距離為,則時,;綜上,原點到直線距離的最小值為.【點睛】本題考查橢圓的方程的知識點,結(jié)合運用向量,韋達定理和點到直線的距離的知識,屬于難題.19.(1)證明見解析(2)【解析】
(1)要證明平面,只需證明,即可:(2)取中點,連,以為原點,分別為軸建立空間直角坐標系,分別求出與平面的法向量,再利用計算即可.【詳解】(1)∵底面為菱形,∵直棱柱平面.∵平面..平面;(2)如圖,取中點,連,以為原點,分別為軸建立如圖所示空間直角坐標系:,點,設(shè)平面的法向量為,,有,令,得又,設(shè)直線與平面所成的角為,所以故直線與平面所成的角的正弦值為.【點睛】本題考查線面垂直的證明以及向量法求線面角的正弦值,考查學(xué)生的運算求解能力,本題解題關(guān)鍵是正確寫出點的坐標.20.(1),頻率分布直方圖見解析;(2)分布列見解析,;(3)來自的可能性最大.【解析】
(1)由頻率和為可知,根據(jù)求得,從而計算得到頻數(shù),補全頻率分布表后可畫出頻率分布直方圖;(2)首先確定的所有可能取值,由超幾何分布概率公式可計算求得每個取值對應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望的計算公式可求得期望;(3)根據(jù)中不贊成比例最大可知來自的可能性最大.【詳解】(1)由頻率分布表得:,即.收入在的有名,,,,則頻率分布直方圖如下:(2)收入在中贊成人數(shù)為,不贊成人數(shù)為,可能取值為,則;;,的分布列為:.(3)來自的可能性更大.【點睛】本題考查概率與統(tǒng)計部分知識的綜合應(yīng)用,涉及到頻數(shù)、頻率的計算、頻率分布直方圖的繪制、服從于超幾何分布的隨機變量的分布列與數(shù)學(xué)期望的求解、統(tǒng)計估計等知識;考查學(xué)生的運算和求解能力.21.(1);(2).【解析】
(1)依據(jù)新定義,的定義域和值域都是,且在上單調(diào),建立方程求解;(2)依據(jù)新定義,討論的單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年白樺林課件:生物多樣性保護的實踐與探索
- 淺析高考英語閱讀理解題的命題特點及解題思路
- 2024年教學(xué)改革:《打瞌睡的房子》課件的新思考
- 2024年母親節(jié)《感恩母親》
- 2023年西方經(jīng)濟學(xué)本期末復(fù)習(xí)及答疑
- 高二下學(xué)期物理人教版選擇性必修第三冊“基本”粒子課件
- 2024年視角下的《六國論》:課件制作與解讀實踐
- 2024年教育改革中的《好的故事》教學(xué)課件研究
- 現(xiàn)代物流專業(yè)復(fù)習(xí)題
- M100咪喹莫特制備及藥理作用
- 只爭朝夕不負韶華崗位競聘述職報告
- 農(nóng)場工作制度與農(nóng)民崗位職責(zé)
- 2024年山東公務(wù)員考試行測真題及解析【完美打印版】
- 田賽裁判法與規(guī)則2
- 社區(qū)心肺復(fù)蘇術(shù)普及
- 冬棗植保知識培訓(xùn)課件
- 校園突發(fā)事件與應(yīng)急管理課件
- 計算機網(wǎng)絡(luò)技術(shù)職業(yè)生涯規(guī)劃
- DR拼接技術(shù)及常規(guī)攝片注意事項
- 《股票入門》課件
- 《不為人知的間歇泉》課件
評論
0/150
提交評論