版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
甘肅省武威市武威十八中2024屆高三4月19日第12周數(shù)學(xué)試題考試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下圖是來(lái)自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.2.已知雙曲線(xiàn):的左右焦點(diǎn)分別為,,為雙曲線(xiàn)上一點(diǎn),為雙曲線(xiàn)C漸近線(xiàn)上一點(diǎn),,均位于第一象限,且,,則雙曲線(xiàn)的離心率為()A. B. C. D.3.若復(fù)數(shù)滿(mǎn)足,則的虛部為()A.5 B. C. D.-54.在邊長(zhǎng)為2的菱形中,,將菱形沿對(duì)角線(xiàn)對(duì)折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.5.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎(jiǎng),現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎(jiǎng)的概率為()A. B. C. D.6.定義在R上的函數(shù)滿(mǎn)足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個(gè)正數(shù)滿(mǎn)足,的取值范圍是()A. B. C. D.7.設(shè)函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.8.已知邊長(zhǎng)為4的菱形,,為的中點(diǎn),為平面內(nèi)一點(diǎn),若,則()A.16 B.14 C.12 D.89.已知全集,集合,則()A. B. C. D.10.已知集合則()A. B. C. D.11.函數(shù)(或)的圖象大致是()A. B. C. D.12.若將函數(shù)的圖象上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變)得到函數(shù)的圖象,則下列說(shuō)法正確的是()A.函數(shù)在上單調(diào)遞增 B.函數(shù)的周期是C.函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng) D.函數(shù)在上最大值是1二、填空題:本題共4小題,每小題5分,共20分。13.若,則______.14.在平面直角坐標(biāo)系中,已知圓及點(diǎn),設(shè)點(diǎn)是圓上的動(dòng)點(diǎn),在中,若的角平分線(xiàn)與相交于點(diǎn),則的取值范圍是_______.15.如果橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在x軸上,且=,那么橢圓的方程是.16.在中,,,則_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù).(1)解不等式;(2)記的最大值為,若實(shí)數(shù)、、滿(mǎn)足,求證:.18.(12分)已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的值域;(2),,求實(shí)數(shù)的取值范圍.19.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.20.(12分)若數(shù)列滿(mǎn)足:對(duì)于任意,均為數(shù)列中的項(xiàng),則稱(chēng)數(shù)列為“數(shù)列”.(1)若數(shù)列的前項(xiàng)和,,試判斷數(shù)列是否為“數(shù)列”?說(shuō)明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對(duì)于任意,均有,求數(shù)列的通項(xiàng)公式.21.(12分)已知在平面四邊形中,的面積為.(1)求的長(zhǎng);(2)已知,為銳角,求.22.(10分)某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從五所高校中任選2所.(1)求甲、乙、丙三名同學(xué)都選高校的概率;(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機(jī)選1所;而同學(xué)乙和丙對(duì)五所高校沒(méi)有偏愛(ài),因此他們每人在五所高校中隨機(jī)選2所.(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進(jìn)而求得所求表達(dá)式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點(diǎn)睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查二倍角公式,屬于基礎(chǔ)題.2、D【解析】由雙曲線(xiàn)的方程的左右焦點(diǎn)分別為,為雙曲線(xiàn)上的一點(diǎn),為雙曲線(xiàn)的漸近線(xiàn)上的一點(diǎn),且都位于第一象限,且,可知為的三等分點(diǎn),且,點(diǎn)在直線(xiàn)上,并且,則,,設(shè),則,解得,即,代入雙曲線(xiàn)的方程可得,解得,故選D.點(diǎn)睛:本題考查了雙曲線(xiàn)的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運(yùn)算能力,雙曲線(xiàn)的離心率是雙曲線(xiàn)最重要的幾何性質(zhì),求雙曲線(xiàn)的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).3、C【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.4、D【解析】
取AC中點(diǎn)N,由題意得即為二面角的平面角,過(guò)點(diǎn)B作于O,易得點(diǎn)O為的中心,則三棱錐的外接球球心在直線(xiàn)BO上,設(shè)球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點(diǎn)N,連接BN,DN,則,,即為二面角的平面角,過(guò)點(diǎn)B作于O,則平面ACD,由,可得,,,即點(diǎn)O為的中心,三棱錐的外接球球心在直線(xiàn)BO上,設(shè)球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點(diǎn)睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.5、C【解析】
先計(jì)算出總的基本事件的個(gè)數(shù),再計(jì)算出兩張都沒(méi)獲獎(jiǎng)的個(gè)數(shù),根據(jù)古典概型的概率,求出兩張都沒(méi)有獎(jiǎng)的概率,由對(duì)立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒(méi)有獎(jiǎng)的情況有(種),故所求概率為.故選:C.【點(diǎn)睛】本題考查古典概型的概率、對(duì)立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.6、C【解析】
先從函數(shù)單調(diào)性判斷的取值范圍,再通過(guò)題中所給的是正數(shù)這一條件和常用不等式方法來(lái)確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識(shí),屬于中檔題.7、B【解析】
由題意首先確定導(dǎo)函數(shù)的符號(hào),然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)在處取得極大值,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.時(shí),,時(shí),,當(dāng)或時(shí),;當(dāng)時(shí),.故選:【點(diǎn)睛】根據(jù)函數(shù)取得極大值,判斷導(dǎo)函數(shù)在極值點(diǎn)附近左側(cè)為正,右側(cè)為負(fù),由正負(fù)情況討論圖像可能成立的選項(xiàng),是判斷圖像問(wèn)題常見(jiàn)方法,有一定難度.8、B【解析】
取中點(diǎn),可確定;根據(jù)平面向量線(xiàn)性運(yùn)算和數(shù)量積的運(yùn)算法則可求得,利用可求得結(jié)果.【詳解】取中點(diǎn),連接,,,即.,,,則.故選:.【點(diǎn)睛】本題考查平面向量數(shù)量積的求解問(wèn)題,涉及到平面向量的線(xiàn)性運(yùn)算,關(guān)鍵是能夠?qū)⑺笙蛄窟M(jìn)行拆解,進(jìn)而利用平面向量數(shù)量積的運(yùn)算性質(zhì)進(jìn)行求解.9、D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補(bǔ)集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算問(wèn)題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.10、B【解析】
解對(duì)數(shù)不等式可得集合A,由交集運(yùn)算即可求解.【詳解】集合解得由集合交集運(yùn)算可得,故選:B.【點(diǎn)睛】本題考查了集合交集的簡(jiǎn)單運(yùn)算,對(duì)數(shù)不等式解法,屬于基礎(chǔ)題.11、A【解析】
確定函數(shù)的奇偶性,排除兩個(gè)選項(xiàng),再求時(shí)的函數(shù)值,再排除一個(gè),得正確選項(xiàng).【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對(duì)稱(chēng),排除B,C,當(dāng)時(shí),,排除D,故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時(shí)可通過(guò)研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱(chēng)性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢(shì),排除錯(cuò)誤選項(xiàng),得正確結(jié)論.12、A【解析】
根據(jù)三角函數(shù)伸縮變換特點(diǎn)可得到解析式;利用整體對(duì)應(yīng)的方式可判斷出在上單調(diào)遞增,正確;關(guān)于點(diǎn)對(duì)稱(chēng),錯(cuò)誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯(cuò)誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無(wú)法取得,錯(cuò)誤.【詳解】將橫坐標(biāo)縮短到原來(lái)的得:當(dāng)時(shí),在上單調(diào)遞增在上單調(diào)遞增,正確;的最小正周期為:不是的周期,錯(cuò)誤;當(dāng)時(shí),,關(guān)于點(diǎn)對(duì)稱(chēng),錯(cuò)誤;當(dāng)時(shí),此時(shí)沒(méi)有最大值,錯(cuò)誤.本題正確選項(xiàng):【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對(duì)稱(chēng)性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關(guān)鍵是能夠靈活應(yīng)用整體對(duì)應(yīng)的方式,通過(guò)正弦函數(shù)的圖象來(lái)判斷出所求函數(shù)的性質(zhì).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
直接利用關(guān)系式求出函數(shù)的被積函數(shù)的原函數(shù),進(jìn)一步求出的值.【詳解】解:若,則,即,所以.故答案為:.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):定積分的應(yīng)用,被積函數(shù)的原函數(shù)的求法,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.14、【解析】
由角平分線(xiàn)成比例定理推理可得,進(jìn)而設(shè)點(diǎn)表示向量構(gòu)建方程組表示點(diǎn)P坐標(biāo),代入圓C方程即可表示動(dòng)點(diǎn)Q的軌跡方程,再由將所求視為該圓上的點(diǎn)與原點(diǎn)間的距離,所以其最值為圓心到原點(diǎn)的距離加減半徑.【詳解】由題可構(gòu)建如圖所示的圖形,因?yàn)锳Q是的角平分線(xiàn),由角平分線(xiàn)成比例定理可知,所以.設(shè)點(diǎn),點(diǎn),即,則,所以.又因?yàn)辄c(diǎn)是圓上的動(dòng)點(diǎn),則,故點(diǎn)Q的運(yùn)功軌跡是以為圓心為半徑的圓,又即為該圓上的點(diǎn)與原點(diǎn)間的距離,因?yàn)椋怨蚀鸢笧椋骸军c(diǎn)睛】本題考查與圓有關(guān)的距離的最值問(wèn)題,常常轉(zhuǎn)化到圓心的距離加減半徑,還考查了求動(dòng)點(diǎn)的軌跡方程,屬于中檔題.15、【解析】
由題意可設(shè)橢圓方程為:∵短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在軸上∴又,∴,∴橢圓的方程為,故答案為.考點(diǎn):橢圓的標(biāo)準(zhǔn)方程,解三角形以及解方程組的相關(guān)知識(shí).16、【解析】
先由題意得:,再利用向量數(shù)量積的幾何意義得,可得結(jié)果.【詳解】由知:,則在方向的投影為,由向量數(shù)量積的幾何意義得:,∴故答案為【點(diǎn)睛】本題考查了投影的應(yīng)用,考查了數(shù)量積的幾何意義及向量的模的運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】
(1)采用零點(diǎn)分段法:、、,由此求解出不等式的解集;(2)先根據(jù)絕對(duì)值不等式的幾何意義求解出的值,然后利用基本不等式及其變形完成證明.【詳解】(1)當(dāng)時(shí),不等式為,解得當(dāng)時(shí),不等式為,解得當(dāng)時(shí),不等式為,解得∴原不等式的解集為(2)當(dāng)且僅當(dāng)即時(shí)取等號(hào),∴,∴∵,∴,∴(當(dāng)且僅當(dāng)時(shí)取“”)同理可得,∴∴(當(dāng)且僅當(dāng)時(shí)取“”)【點(diǎn)睛】本題考查絕對(duì)值不等式的解法以及利用基本不等式證明不等式,難度一般.(1)常見(jiàn)的絕對(duì)值不等式解法:零點(diǎn)分段法、圖象法、幾何意義法;(2)利用基本不等式完成證明時(shí),注意說(shuō)明取等號(hào)的條件.18、(1);(2).【解析】
(1)將代入函數(shù)的解析式,將函數(shù)的及解析式變形為分段函數(shù),利用二次函數(shù)的基本性質(zhì)可求得函數(shù)的值域;(2)由參變量分離法得出在區(qū)間內(nèi)有解,分和討論,求得函數(shù)的最大值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.函數(shù)的值域?yàn)?;?)不等式等價(jià)于,即在區(qū)間內(nèi)有解當(dāng)時(shí),,此時(shí),,則;當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞增,當(dāng)時(shí),,則.綜上,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查含絕對(duì)值函數(shù)的值域與含絕對(duì)值不等式有解的問(wèn)題,利用絕對(duì)值的應(yīng)用將函數(shù)轉(zhuǎn)化為二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵,考查分類(lèi)討論思想的應(yīng)用,屬于中等題.19、(1)證明見(jiàn)解析;(2).【解析】
(1)取中點(diǎn),連接,根據(jù)等腰三角形的性質(zhì)得到,利用全等三角形證得,由此證得平面,進(jìn)而證得平面平面.(2)由(1)知平面,即是四面體的面上的高,結(jié)合錐體體積公式,求得四面體的體積.【詳解】(1)證明:如圖,取中點(diǎn),連接,由則,則,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面體的面上的高,且.在中,,由勾股定理易知故四面體的體積【點(diǎn)睛】本小題主要考查面面垂直的證明,考查錐體體積計(jì)算,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)不是,見(jiàn)解析(2)(3)【解析】
(1)利用遞推關(guān)系求出數(shù)列的通項(xiàng)公式,進(jìn)一步驗(yàn)證時(shí),是否為數(shù)列中的項(xiàng),即可得答案;(2)由題意得,再對(duì)公差進(jìn)行分類(lèi)討論,即可得答案;(3)由題意得數(shù)列為等差數(shù)列,設(shè)數(shù)列的公差為,再根據(jù)不等式得到公差的值,即可得答案;【詳解】(1)當(dāng)時(shí),又,所以.所以當(dāng)時(shí),,而,所以時(shí),不是數(shù)列中的項(xiàng),故數(shù)列不是為“數(shù)列”(2)因?yàn)閿?shù)列是公差為的等差數(shù)列,所以.因?yàn)閿?shù)列為“數(shù)列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數(shù)列中的項(xiàng).②若,則.此時(shí),當(dāng)時(shí),不為正整數(shù),所以不符合題意.綜上,.(3)由題意,所以,又因?yàn)?,且?shù)列為“數(shù)列”,所以,即,所以數(shù)列為等差數(shù)列.設(shè)數(shù)列的公差為,則有,由,得,整理得,①.②若,取正整數(shù),則當(dāng)時(shí),,與①式對(duì)應(yīng)任意恒成立相矛盾,因此.同樣根據(jù)②式可得,所以.又,所以.經(jīng)檢驗(yàn)當(dāng)時(shí),①②兩式對(duì)應(yīng)任意恒成立,所以數(shù)列的通項(xiàng)公式為.【點(diǎn)睛】本題考查數(shù)列新定義題、等差數(shù)列的通項(xiàng)公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新型能源汽車(chē)短期借用協(xié)議書(shū)4篇
- 2025年度文化產(chǎn)業(yè)發(fā)展基金投資合作合同4篇
- 2025年度智能家居櫥柜定制工程協(xié)議書(shū)4篇
- 2025年度新能源車(chē)輛租賃代理合同模板3篇
- 2024版離婚協(xié)議年范本
- 2025年單梁橋式起重機(jī)項(xiàng)目可行性研究報(bào)告-20250102-152444
- 2025年中鹽青海昆侖堿業(yè)有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年四川壯禾人力資源有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年中國(guó)郵政證券有限責(zé)任公司招聘筆試參考題庫(kù)含答案解析
- 2025年江蘇弘景建設(shè)規(guī)劃有限公司招聘筆試參考題庫(kù)含答案解析
- 漆畫(huà)漆藝 第三章
- CB/T 615-1995船底吸入格柵
- 光伏逆變器一課件
- 貨物供應(yīng)、運(yùn)輸、包裝說(shuō)明方案
- (完整版)英語(yǔ)高頻詞匯800詞
- 《基礎(chǔ)馬來(lái)語(yǔ)》課程標(biāo)準(zhǔn)(高職)
- IEC61850研討交流之四-服務(wù)影射
- 《兒科學(xué)》新生兒窒息課件
- 材料力學(xué)壓桿穩(wěn)定
- 人教版小升初英語(yǔ)知識(shí)點(diǎn)匯總
- 靜態(tài)爆破專(zhuān)項(xiàng)施工方案
評(píng)論
0/150
提交評(píng)論