




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
宿遷市重點中學(xué)2025屆高考適應(yīng)性考試數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.2.從集合中隨機選取一個數(shù)記為,從集合中隨機選取一個數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為()A. B. C. D.3.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.將函數(shù)的圖像向左平移個單位長度后,得到的圖像關(guān)于坐標(biāo)原點對稱,則的最小值為()A. B. C. D.5.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.6.在四邊形中,,,,,,點在線段的延長線上,且,點在邊所在直線上,則的最大值為()A. B. C. D.7.要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像()A.向右平移個單位長度,再把各點的縱坐標(biāo)伸長到原來的3倍B.向右平移個單位長度,再把各點的縱坐標(biāo)縮短到原來的倍C.向左平移個單位長度,再把各點的縱坐標(biāo)縮短到原來的倍D.向左平移個單位長度,再把各點的縱坐標(biāo)伸長到原來的3倍8.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.9.百年雙中的校訓(xùn)是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運動會中有這樣的一個小游戲.袋子中有大小、形狀完全相同的四個小球,分別寫有“仁”、“智”、“雅”、“和”四個字,有放回地從中任意摸出一個小球,直到“仁”、“智”兩個字都摸到就停止摸球.小明同學(xué)用隨機模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下20組隨機數(shù):141432341342234142243331112322342241244431233214344142134412由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.10.對于函數(shù),若滿足,則稱為函數(shù)的一對“線性對稱點”.若實數(shù)與和與為函數(shù)的兩對“線性對稱點”,則的最大值為()A. B. C. D.11.已知集合,,則為()A. B. C. D.12.一袋中裝有個紅球和個黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,已知,則的最小值是________.14.已知,滿足約束條件則的最大值為__________.15.已知集合,,則_____________.16.將函數(shù)的圖象向左平移個單位長度,得到一個偶函數(shù)圖象,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.18.(12分)設(shè)函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時,若,,求證:.19.(12分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.20.(12分)已知,,,.(1)求的值;(2)求的值.21.(12分)某企業(yè)對設(shè)備進行升級改造,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項質(zhì)量指標(biāo)值,該項質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的產(chǎn)品視為合格品,否則視為不合格品,如圖是設(shè)備改造前樣本的頻率分布直方圖,下表是設(shè)備改造后樣本的頻數(shù)分布表.圖:設(shè)備改造前樣本的頻率分布直方圖表:設(shè)備改造后樣本的頻率分布表質(zhì)量指標(biāo)值頻數(shù)2184814162(1)求圖中實數(shù)的值;(2)企業(yè)將不合格品全部銷毀后,對合格品進行等級細分,質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的定為一等品,每件售價240元;質(zhì)量指標(biāo)值落在區(qū)間或內(nèi)的定為二等品,每件售價180元;其他的合格品定為三等品,每件售價120元,根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.若有一名顧客隨機購買兩件產(chǎn)品支付的費用為(單位:元),求的分布列和數(shù)學(xué)期望.22.(10分)已知函數(shù),.(1)當(dāng)時,討論函數(shù)的零點個數(shù);(2)若在上單調(diào)遞增,且求c的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎(chǔ)題.2、A【解析】
設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.3、B【解析】
或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎(chǔ)題.4、B【解析】
由余弦的二倍角公式化簡函數(shù)為,要想在括號內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個單位長度,即為答案.【詳解】由題可知,對其向左平移個單位長度后,,其圖像關(guān)于坐標(biāo)原點對稱故的最小值為故選:B【點睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運用,屬于簡單題.5、A【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.6、A【解析】
依題意,如圖以為坐標(biāo)原點建立平面直角坐標(biāo)系,表示出點的坐標(biāo),根據(jù)求出的坐標(biāo),求出邊所在直線的方程,設(shè),利用坐標(biāo)表示,根據(jù)二次函數(shù)的性質(zhì)求出最大值.【詳解】解:依題意,如圖以為坐標(biāo)原點建立平面直角坐標(biāo)系,由,,,,,,,因為點在線段的延長線上,設(shè),解得,所在直線的方程為因為點在邊所在直線上,故設(shè)當(dāng)時故選:【點睛】本題考查向量的數(shù)量積,關(guān)鍵是建立平面直角坐標(biāo)系,屬于中檔題.7、D【解析】
先求得,再根據(jù)三角函數(shù)圖像變換的知識,選出正確選項.【詳解】依題意,所以由向左平移個單位長度,再把各點的縱坐標(biāo)伸長到原來的3倍得到的圖像.故選:D【點睛】本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.8、D【解析】
設(shè)圓錐的母線長為l,底面半徑為R,再表達圓錐表面積與球的表面積公式,進而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.9、A【解析】
由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數(shù)比20即可得解.【詳解】由題意可知當(dāng)1,2同時出現(xiàn)時即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【點睛】本題考查了簡單隨機抽樣中隨機數(shù)的應(yīng)用和古典概型概率的計算,屬于基礎(chǔ)題.10、D【解析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線性對稱點”,所以,故(當(dāng)且僅當(dāng)時取等號).又與為函數(shù)的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數(shù)函數(shù)的運算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達式是解題的關(guān)鍵,屬于中檔題.11、C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.12、A【解析】
由題意可知,隨機變量的可能取值有、、、,計算出隨機變量在不同取值下的概率,進而可求得隨機變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機變量的可能取值有、、、,則,,,.因此,隨機變量的數(shù)學(xué)期望為.故選:A.【點睛】本題考查隨機變量數(shù)學(xué)期望的計算,考查計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結(jié)合余弦定理整理為,再由cosC的余弦定理得到a,b的關(guān)系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當(dāng)a=b時取到等號,故cosC的最小值為.點睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運用,能正確轉(zhuǎn)化是解題關(guān)鍵.屬于中檔題.14、1【解析】
先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點,代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過點時,取得最大值為:.故答案為:1.【點睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.15、【解析】
由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.【點睛】本題考查了交集及其運算,屬于基礎(chǔ)題.16、【解析】
根據(jù)平移后關(guān)于軸對稱可知關(guān)于對稱,進而利用特殊值構(gòu)造方程,從而求得結(jié)果.【詳解】向左平移個單位長度后得到偶函數(shù)圖象,即關(guān)于軸對稱關(guān)于對稱即:本題正確結(jié)果:【點睛】本題考查根據(jù)三角函數(shù)的對稱軸求解參數(shù)值的問題,關(guān)鍵是能夠通過平移后的對稱軸得到原函數(shù)的對稱軸,進而利用特殊值的方式來進行求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】
(1)將函數(shù)整理為分段函數(shù)形式可得,進而分類討論求解不等式即可;(2)先利用絕對值不等式的性質(zhì)得到的最大值為3,再利用均值定理證明即可.【詳解】(1)①當(dāng)時,恒成立,;②當(dāng)時,,即,;③當(dāng)時,顯然不成立,不合題意;綜上所述,不等式的解集為.(2)由(1)知,于是由基本不等式可得(當(dāng)且僅當(dāng)時取等號)(當(dāng)且僅當(dāng)時取等號)(當(dāng)且僅當(dāng)時取等號)上述三式相加可得(當(dāng)且僅當(dāng)時取等號),,故得證.【點睛】本題考查解絕對值不等式和利用均值定理證明不等式,考查絕對值不等式的最值的應(yīng)用,解題關(guān)鍵是掌握分類討論解決帶絕對值不等式的方法,考查了分析能力和計算能力,屬于中檔題.18、(1)證明見解析;(2)證明見解析.【解析】
(1)首先對函數(shù)求導(dǎo),再根據(jù)參數(shù)的取值,討論的正負,即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),討論新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的單調(diào)性證明.【詳解】(1),令,則,令得,當(dāng)時,則在單調(diào)遞減,當(dāng)時,則在單調(diào)遞增,所以,當(dāng)時,,即,則在上單調(diào)遞增,當(dāng)時,,易知當(dāng)時,,當(dāng)時,,由零點存在性定理知,,不妨設(shè),使得,當(dāng)時,,即,當(dāng)時,,即,當(dāng)時,,即,所以在和上單調(diào)遞增,在單調(diào)遞減;(2)證明:構(gòu)造函數(shù),,,,整理得,,(當(dāng)時等號成立),所以在上單調(diào)遞增,則,所以在上單調(diào)遞增,,這里不妨設(shè),欲證,即證由(1)知時,在上單調(diào)遞增,則需證,由已知有,只需證,即證,由在上單調(diào)遞增,且時,有,故成立,從而得證.【點睛】本題主要考查了導(dǎo)數(shù)含參分類討論單調(diào)性,借助構(gòu)造函數(shù)和單調(diào)性證明不等式,屬于難題.19、(1);(2)1.【解析】
(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結(jié)合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長的值.【詳解】(1)由題意,在中,因為,由正弦定理,可得sinAsinB=sinBcosA,又因為,可得sinB≠0,所以sinA=cosA,即:tanA=,因為A∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長a+b+c=5+7=1.【點睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.20、(1)(2)【解析】
(1)先利用同角的三角函數(shù)關(guān)系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【詳解】解:(1)因為,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因為且,即,解得,因為,所以,所以,所以,所以【點睛】本題考查已知三角函數(shù)值求值,考查三角函數(shù)的化簡,考查和角公式,二倍角公式,同角的三角函數(shù)關(guān)系的應(yīng)用,考查運算能力.21、(1)(2)詳見解析【解析】
(1)由頻率分布直方圖中所有頻率(小矩形面積)之和為1可計算出值;(2)由頻數(shù)分布表知一等品、二等品、三等品的概率分別為.,選2件產(chǎn)品,支付的費用的所有取值為240,300,360,420,480,由相互獨立事件的概率公式分別計算出概率,得概率分布列,由公式計算出期望.【詳解】解:(1)據(jù)題意,得所以(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程建筑合同
- 房地產(chǎn)定向開發(fā)合同
- 杭州房屋買賣合同原件
- 食堂肉類采購合同
- 房屋居間委托合同
- 挖掘機產(chǎn)品銷售合同
- 辦公用品采購與供應(yīng)服務(wù)合同書
- 貨物運輸合同進口
- 1《我們愛整潔》( 教學(xué)設(shè)計)2023-2024學(xué)年統(tǒng)編版道德與法治一年級下冊
- 山西師范大學(xué)《家具設(shè)計與制作》2023-2024學(xué)年第二學(xué)期期末試卷
- 高中校長在2025春季開學(xué)典禮上的講話
- 2025年六年級數(shù)學(xué)下冊春季開學(xué)第一課(人教版) 2024-2025學(xué)年 典型例題系列(2025版)六年級數(shù)學(xué)下冊(人教版) 課件
- 1.2 男生女生 (課件)2024-2025學(xué)年七年級道德與法治下冊(統(tǒng)編版2024)
- 中央2025年公安部部分直屬事業(yè)單位招聘84人筆試歷年參考題庫附帶答案詳解
- 高教版2023年中職教科書《語文》(基礎(chǔ)模塊)上冊教案全冊
- 存款代持協(xié)議書范文模板
- 2023年部編人教版三年級《道德與法治》下冊全冊課件【全套】
- 光伏項目施工總進度計劃表(含三級)
- DB32-T 4757-2024 連棟塑料薄膜溫室建造技術(shù)規(guī)范
- 部編版小學(xué)語文四年級下冊教師教學(xué)用書(教學(xué)參考)完整版
- 物流倉庫領(lǐng)料、發(fā)料操作流程圖
評論
0/150
提交評論