新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)第7章第05講 空間向量及其應(yīng)用(練習(xí))(解析版)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)第7章第05講 空間向量及其應(yīng)用(練習(xí))(解析版)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)第7章第05講 空間向量及其應(yīng)用(練習(xí))(解析版)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)第7章第05講 空間向量及其應(yīng)用(練習(xí))(解析版)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測(cè)第7章第05講 空間向量及其應(yīng)用(練習(xí))(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第05講空間向量及其應(yīng)用(模擬精練+真題演練)1.(2023·內(nèi)蒙古烏蘭察布·??既#┱襟wSKIPIF1<0中,E,F(xiàn)分別是SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0與EF所成角的余弦值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】正方體SKIPIF1<0中,E,F(xiàn)分別是SKIPIF1<0的中點(diǎn),設(shè)正方體SKIPIF1<0中棱長(zhǎng)為2,以D為原點(diǎn),SKIPIF1<0為SKIPIF1<0軸,建立空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,

設(shè)直線SKIPIF1<0與EF所成角為θ,SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴直線SKIPIF1<0與EF所成角的余弦值是SKIPIF1<0.故選:B.2.(2023·西藏日喀則·統(tǒng)考一模)已知向量SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0垂直,則SKIPIF1<0(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由于SKIPIF1<0與SKIPIF1<0垂直,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,故選:D3.(2023·江蘇揚(yáng)州·揚(yáng)州中學(xué)??寄M預(yù)測(cè))定義兩個(gè)向量SKIPIF1<0與SKIPIF1<0的向量積是SKIPIF1<0一個(gè)向量,它的模SKIPIF1<0,它的方向與SKIPIF1<0和SKIPIF1<0同時(shí)垂直,且以SKIPIF1<0的順序符合右手法則(如圖),在棱長(zhǎng)為2的正四面體SKIPIF1<0中,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0. C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0為三角形SKIPIF1<0的外心,所以SKIPIF1<0,進(jìn)而SKIPIF1<0SKIPIF1<0,SKIPIF1<0由于SKIPIF1<0與SKIPIF1<0共線,且方向相同,則SKIPIF1<0,故選:D

4.(2023·黑龍江哈爾濱·哈師大附中??寄M預(yù)測(cè))如圖,四棱錐SKIPIF1<0中,底面SKIPIF1<0為正方形,SKIPIF1<0是正三角形,SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0所成角的余弦值為(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,因?yàn)镾KIPIF1<0是正三角形,所以SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,如圖建立空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0.

故選:A5.(2023·云南保山·統(tǒng)考二模)已知正方體SKIPIF1<0,Q為上底面SKIPIF1<0所在平面內(nèi)的動(dòng)點(diǎn),當(dāng)直線SKIPIF1<0與SKIPIF1<0的所成角為45°時(shí),點(diǎn)Q的軌跡為(

)A.圓 B.直線 C.拋物線 D.橢圓【答案】C【解析】以點(diǎn)D為原點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為x,y,z的正方向,建立空間直角坐標(biāo)系,設(shè)正方體棱長(zhǎng)為1,則SKIPIF1<0,設(shè)SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與SKIPIF1<0的所成角為SKIPIF1<0,則SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0,所以點(diǎn)Q的軌跡為拋物線.故選:C.

6.(2023·江蘇徐州·校考模擬預(yù)測(cè))在空間直角坐標(biāo)系中,直線SKIPIF1<0的方程為SKIPIF1<0,空間一點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】根據(jù)題意,直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,則直線SKIPIF1<0的方向向量為SKIPIF1<0,又因?yàn)檫^(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上的射影為:SKIPIF1<0,故點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為:SKIPIF1<0.故選:D.7.(2023·貴州畢節(jié)·??寄M預(yù)測(cè))鐘鼓樓是中國(guó)傳統(tǒng)建筑之一,屬于鐘樓和鼓樓的合稱,是主要用于報(bào)時(shí)的建筑.中國(guó)古代一般建于城市的中心地帶,在現(xiàn)代城市中,也可以常??匆?jiàn)附有鐘樓的建筑.如圖,在某市一建筑物樓頂有一頂部逐級(jí)收攏的四面鐘樓,四個(gè)大鐘對(duì)稱分布在四棱柱的四個(gè)側(cè)面(四棱柱看成正四棱柱,鐘面圓心在棱柱側(cè)面中心上),在整點(diǎn)時(shí)刻(在0點(diǎn)至12點(diǎn)中取整數(shù)點(diǎn),含0點(diǎn),不含12點(diǎn)),已知在3點(diǎn)時(shí)和9點(diǎn)時(shí),相鄰兩鐘面上的時(shí)針?biāo)诘膬蓷l直線相互垂直,則在2點(diǎn)時(shí)和8點(diǎn)時(shí),相鄰兩鐘面上的時(shí)針?biāo)诘膬蓷l直線所成的角的余弦值為(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】如圖,在正四棱柱SKIPIF1<0中,SKIPIF1<0分別為側(cè)面SKIPIF1<0和側(cè)面SKIPIF1<0的中心,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0點(diǎn)鐘時(shí)針,SKIPIF1<0為SKIPIF1<0點(diǎn)鐘時(shí)針,則SKIPIF1<0,SKIPIF1<0,設(shè)正四棱柱的底面邊長(zhǎng)為SKIPIF1<0,側(cè)棱長(zhǎng)為SKIPIF1<0,以SKIPIF1<0為原點(diǎn),以SKIPIF1<0的方向分別為SKIPIF1<0軸建立空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.所以在2點(diǎn)時(shí)和8點(diǎn)時(shí),相鄰兩鐘面上的時(shí)針?biāo)诘膬蓷l直線所成的角的余弦值為SKIPIF1<0.

故選:B8.(2023·江西·校聯(lián)考模擬預(yù)測(cè))在空間直角坐標(biāo)系中,已知SKIPIF1<0,則當(dāng)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離最小時(shí),直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】因?yàn)镾KIPIF1<0,可得SKIPIF1<0,設(shè)SKIPIF1<0是平面SKIPIF1<0的法向量,則SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值,此時(shí)SKIPIF1<0,所以直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0.故選:C.9.(多選題)(2023·福建寧德·??寄M預(yù)測(cè))已知空間單位向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0兩兩夾角均為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列說(shuō)法中正確的是(

)A.SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)可以共面B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】BC【解析】由于單位向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0兩兩夾角均為SKIPIF1<0,所以SKIPIF1<0,假設(shè)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)可以共面,則SKIPIF1<0共面,所以存在SKIPIF1<0,使得SKIPIF1<0,分別用SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0點(diǎn)乘,則SKIPIF1<0,由于該方程組無(wú)解,所以不存在SKIPIF1<0,使得SKIPIF1<0共面,故SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)不共面,故A錯(cuò)誤,對(duì)于B,SKIPIF1<0,故B正確,對(duì)于C,由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,故C正確;對(duì)于D,SKIPIF1<0,故SKIPIF1<0,故D錯(cuò)誤,故選:BC.10.(多選題)(2023·海南??凇ば?寄M預(yù)測(cè))在長(zhǎng)方體SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是線段SKIPIF1<0上(含端點(diǎn))的一動(dòng)點(diǎn),則下列說(shuō)法正確的是(

)A.該長(zhǎng)方體外接球表面積為SKIPIF1<0 B.三棱錐SKIPIF1<0的體積為定值C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0 D.SKIPIF1<0的最大值為1【答案】ABD【解析】設(shè)長(zhǎng)方體SKIPIF1<0外接球的半徑為SKIPIF1<0,該長(zhǎng)方體外接球的直徑即為長(zhǎng)方體對(duì)角線的長(zhǎng),即有SKIPIF1<0,所以SKIPIF1<0,所以外接球表面積為SKIPIF1<0,故A正確;因?yàn)樵陂L(zhǎng)方體SKIPIF1<0中,SKIPIF1<0是線段SKIPIF1<0上(含端點(diǎn))的一動(dòng)點(diǎn),所以SKIPIF1<0到平面SKIPIF1<0的距離即為SKIPIF1<0的長(zhǎng),所以SKIPIF1<0,是定值,故B正確;如圖,以SKIPIF1<0為原點(diǎn)建立空間直角坐標(biāo)系,

則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則可得SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,解得SKIPIF1<0,此時(shí)SKIPIF1<0,故C錯(cuò)誤;SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0取得最大值為1,故D正確.故選:ABD11.(多選題)(2023·福建福州·福建省福州第一中學(xué)??寄M預(yù)測(cè))如圖,在各棱長(zhǎng)均為2的正三棱柱SKIPIF1<0中,SKIPIF1<0分別是SKIPIF1<0的中點(diǎn),設(shè)SKIPIF1<0,SKIPIF1<0,則(

A.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0B.SKIPIF1<0,使得SKIPIF1<0平面SKIPIF1<0C.SKIPIF1<0,使得SKIPIF1<0平面SKIPIF1<0D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0【答案】AC【解析】

取SKIPIF1<0中點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),分別以SKIPIF1<0為SKIPIF1<0軸,以過(guò)點(diǎn)SKIPIF1<0且與SKIPIF1<0平行的直線為SKIPIF1<0軸,建立空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,由SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.對(duì)于A項(xiàng),當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,所以,SKIPIF1<0,所以SKIPIF1<0,故A項(xiàng)正確;對(duì)于B項(xiàng),因?yàn)镾KIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0是平面SKIPIF1<0的一個(gè)法向量,則有SKIPIF1<0,即SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0是平面SKIPIF1<0的一個(gè)法向量.若SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0,顯然SKIPIF1<0不共線,故B錯(cuò)誤;對(duì)于C項(xiàng),因?yàn)镾KIPIF1<0,SKIPIF1<0是平面SKIPIF1<0的一個(gè)法向量.要使SKIPIF1<0平面SKIPIF1<0,則應(yīng)有SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以,SKIPIF1<0,使得SKIPIF1<0平面SKIPIF1<0,故C項(xiàng)正確;對(duì)于D項(xiàng),當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0是平面SKIPIF1<0的一個(gè)法向量,設(shè)SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0,故D項(xiàng)錯(cuò)誤.故選:AC.12.(多選題)(2023·海南??凇ずD先A僑中學(xué)??家荒#┤鐖D,在棱長(zhǎng)為1的正方體SKIPIF1<0中,SKIPIF1<0是棱SKIPIF1<0上的動(dòng)點(diǎn),則下列說(shuō)法正確的是(

A.不存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0B.存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0C.對(duì)于任意點(diǎn)SKIPIF1<0,SKIPIF1<0到SKIPIF1<0的距離的取值范圍為SKIPIF1<0D.對(duì)于任意點(diǎn)SKIPIF1<0,SKIPIF1<0都是鈍角三角形【答案】ABC【解析】由題知,在正方體SKIPIF1<0中,SKIPIF1<0是棱SKIPIF1<0上的動(dòng)點(diǎn),建立以SKIPIF1<0為原點(diǎn),分別以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的方向?yàn)镾KIPIF1<0軸、SKIPIF1<0軸、SKIPIF1<0軸的正方向的空間直角坐標(biāo)系SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,其中SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0,所以SKIPIF1<0,顯然方程組無(wú)解,所以不存在SKIPIF1<0使得SKIPIF1<0,即不存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,故A項(xiàng)正確;當(dāng)SKIPIF1<0時(shí),解得SKIPIF1<0,故B項(xiàng)正確;因?yàn)镾KIPIF1<0,其中SKIPIF1<0,所以點(diǎn)Q到SKIPIF1<0的距離為SKIPIF1<0,故C項(xiàng)正確;因?yàn)镾KIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,所以SKIPIF1<0,所以三角形為SKIPIF1<0直角三角形或鈍角三角形,故D項(xiàng)錯(cuò)誤.

故選:ABC13.(2023·河北·統(tǒng)考模擬預(yù)測(cè))點(diǎn)SKIPIF1<0、SKIPIF1<0分別是正四面體ABCD棱SKIPIF1<0、SKIPIF1<0的中點(diǎn),則SKIPIF1<0.【答案】SKIPIF1<0【解析】以SKIPIF1<0為基底,它們兩兩之間均為SKIPIF1<0,設(shè)正四面體ABCD棱長(zhǎng)為2,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<014.(2023·重慶沙坪壩·重慶一中??寄M預(yù)測(cè))在空間直角坐標(biāo)系中,一四面體的四個(gè)頂點(diǎn)坐標(biāo)分別為SKIPIF1<0,則其體積為.【答案】SKIPIF1<0/SKIPIF1<0【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面ABC的一個(gè)法向量為SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0方向的投影的絕對(duì)值即為點(diǎn)D到平面ABC的距離SKIPIF1<0,四面體SKIPIF1<0的體積SKIPIF1<0;故答案為:SKIPIF1<0.15.(2023·北京大興·??既#┤鐖D,在正方體SKIPIF1<0,中,SKIPIF1<0,SKIPIF1<0分別為線段SKIPIF1<0,SKIPIF1<0上的動(dòng)點(diǎn).給出下列四個(gè)結(jié)論:

①存在點(diǎn)SKIPIF1<0,存在點(diǎn)SKIPIF1<0,滿足SKIPIF1<0∥平面SKIPIF1<0;②任意點(diǎn)SKIPIF1<0,存在點(diǎn)SKIPIF1<0,滿足SKIPIF1<0∥平面SKIPIF1<0;③任意點(diǎn)SKIPIF1<0,存在點(diǎn)SKIPIF1<0,滿足SKIPIF1<0;④任意點(diǎn)SKIPIF1<0,存在點(diǎn)SKIPIF1<0,滿足SKIPIF1<0.其中所有正確結(jié)論的序號(hào)是.【答案】①③【解析】對(duì)①,當(dāng)SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn)時(shí),取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則根據(jù)中位線的性質(zhì)可得SKIPIF1<0SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0,同理SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,故平面SKIPIF1<0平面SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0.故①正確.

對(duì)②,當(dāng)SKIPIF1<0在SKIPIF1<0時(shí),SKIPIF1<0∥平面SKIPIF1<0不成立,故②錯(cuò)誤;對(duì)③④,以SKIPIF1<0為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系,設(shè)正方體SKIPIF1<0棱長(zhǎng)為1,則SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,其中SKIPIF1<0,故SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即SKIPIF1<0.故對(duì)任意的SKIPIF1<0,存在SKIPIF1<0滿足條件,即任意點(diǎn)SKIPIF1<0,存在點(diǎn)SKIPIF1<0,滿足SKIPIF1<0.故③正確;當(dāng)SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0點(diǎn)時(shí),若SKIPIF1<0,則SKIPIF1<0,不滿足SKIPIF1<0,即SKIPIF1<0不在SKIPIF1<0上,故④錯(cuò)誤.

故答案為:①③16.(2023·全國(guó)·模擬預(yù)測(cè))已知長(zhǎng)方體SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0是線段SKIPIF1<0上靠近點(diǎn)SKIPIF1<0的三等分點(diǎn),記直線SKIPIF1<0的夾角為SKIPIF1<0,直線SKIPIF1<0的夾角為SKIPIF1<0,直線SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0之間的大小關(guān)系為.(橫線上按照從小到大的順序進(jìn)行書(shū)寫(xiě))【答案】SKIPIF1<0【解析】

記SKIPIF1<0,如圖,以SKIPIF1<0為原點(diǎn),建立空間直角坐標(biāo)系,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故SKIPIF1<0.故答案為:SKIPIF1<0.17.(2023·廣東·校聯(lián)考模擬預(yù)測(cè))如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0,四邊形SKIPIF1<0是菱形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是棱SKIPIF1<0上的中點(diǎn).

(1)求三棱錐SKIPIF1<0的體積;(2)求平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值.【解析】(1)因?yàn)樗倪呅蜸KIPIF1<0是菱形,所以SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.因?yàn)镾KIPIF1<0是棱SKIPIF1<0上的中點(diǎn),所以SKIPIF1<0到平面SKIPIF1<0的距離SKIPIF1<0,四邊形SKIPIF1<0是菱形,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴三棱錐SKIPIF1<0的體積為SKIPIF1<0.(2)取棱SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則有SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0.SKIPIF1<0兩兩垂直,故以SKIPIF1<0為原點(diǎn),分別以SKIPIF1<0的方向?yàn)镾KIPIF1<0軸的正方向,建立空間直角坐標(biāo)系.因SKIPIF1<0,則SKIPIF1<0.

因SKIPIF1<0是棱SKIPIF1<0上的中點(diǎn),則SKIPIF1<0.設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0.平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0.設(shè)平面SKIPIF1<0與平面SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0.故平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值為SKIPIF1<0.18.(2023·江蘇徐州·??寄M預(yù)測(cè))在三棱臺(tái)SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.

(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,平面SKIPIF1<0與平面SKIPIF1<0所成二面角大小為SKIPIF1<0,求三棱錐SKIPIF1<0的體積.【解析】(1)在三棱臺(tái)SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0中點(diǎn),則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0.(2)∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點(diǎn),∴SKIPIF1<0.以SKIPIF1<0為正交基底,建立空間直角坐標(biāo)系SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.∵SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0.

19.(2023·寧夏銀川·??寄M預(yù)測(cè))如圖,在四棱錐SKIPIF1<0中,底面SKIPIF1<0是邊長(zhǎng)為2的菱形,SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0是SKIPIF1<0上一點(diǎn),且SKIPIF1<0.

(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,求直線SKIPIF1<0與平面SKIPIF1<0所成角的余弦值.【解析】(1)證明:SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0中點(diǎn),SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0;(2)底面SKIPIF1<0是邊長(zhǎng)為2的菱形,所以SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,如圖所示,以SKIPIF1<0為原點(diǎn),以SKIPIF1<0所在直線為SKIPIF1<0軸,建立空間直角坐標(biāo)系,

SKIPIF1<0SKIPIF1<0,底面SKIPIF1<0是邊長(zhǎng)為2的菱形,SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,設(shè)直線SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0.SKIPIF1<0則SKIPIF1<0,故有SKIPIF1<0,所以直線SKIPIF1<0與平面SKIPIF1<0所成角的余弦值SKIPIF1<0.20.(2023·河南·襄城高中校聯(lián)考模擬預(yù)測(cè))如圖,在正四棱臺(tái)SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為棱SKIPIF1<0,SKIPIF1<0的中點(diǎn),棱SKIPIF1<0上存在一點(diǎn)SKIPIF1<0,使得SKIPIF1<0平面SKIPIF1<0.

(1)求SKIPIF1<0;(2)當(dāng)正四棱臺(tái)SKIPIF1<0的體積最大時(shí),求SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.【解析】(1)作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,再作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.又平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0,即SKIPIF1<0為棱SKIPIF1<0的四等分點(diǎn),故SKIPIF1<0也為棱SKIPIF1<0的四等分點(diǎn),所以SKIPIF1<0.(2)由(1)易知SKIPIF1<0為SKIPIF1<0的四等分點(diǎn),所以點(diǎn)SKIPIF1<0在點(diǎn)SKIPIF1<0的正上方,所以SKIPIF1<0底面SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以該四棱臺(tái)的體積SKIPIF1<0,而SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),此時(shí)SKIPIF1<0,SKIPIF1<0.以SKIPIF1<0為原點(diǎn),SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0軸、SKIPIF1<0軸,過(guò)SKIPIF1<0平行于SKIPIF1<0的直線為SKIPIF1<0軸建立如圖所示的空間直角坐標(biāo)系,

則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0.設(shè)SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0.21.(2023·山東濰坊·三模)如圖,SKIPIF1<0為圓錐的頂點(diǎn),SKIPIF1<0是圓錐底面的圓心,SKIPIF1<0為底面直徑,SKIPIF1<0為底面圓SKIPIF1<0的內(nèi)接正三角形,且邊長(zhǎng)為SKIPIF1<0,點(diǎn)SKIPIF1<0在母線SKIPIF1<0上,且SKIPIF1<0.

(1)求證:直線SKIPIF1<0平面SKIPIF1<0;(2)求證:平面SKIPIF1<0平面SKIPIF1<0;(3)若點(diǎn)SKIPIF1<0為線段SKIPIF1<0上的動(dòng)點(diǎn).當(dāng)直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值最大時(shí),求此時(shí)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.【解析】(1)如圖,設(shè)SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,易知SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0是底面圓的內(nèi)接正三角形,由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,直線SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以直線SKIPIF1<0平面SKIPIF1<0..

(2)因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0;(3)易知SKIPIF1<0,以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0所在直線分別為SKIPIF1<0軸,SKIPIF1<0軸,SKIPIF1<0軸,建立如圖所示的空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,

設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,可得SKIPIF1<0,設(shè)直線SKIPIF1<0與平面SKIPIF1<0所成的角為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值4,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最大值為1,此時(shí)點(diǎn)SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離SKIPIF1<0,故當(dāng)直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值最大時(shí),點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0.1.(2023?新高考Ⅰ)如圖,在正四棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別在棱SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)證明:SKIPIF1<0;(2)點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,當(dāng)二面角SKIPIF1<0為SKIPIF1<0時(shí),求SKIPIF1<0.【解析】(1)證明:根據(jù)題意建系如圖,則有:SKIPIF1<0,2,SKIPIF1<0,SKIPIF1<0,0,SKIPIF1<0,SKIPIF1<0,2,SKIPIF1<0,SKIPIF1<0,0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)不共線,SKIPIF1<0;(2)在(1)的坐標(biāo)系下,可設(shè)SKIPIF1<0,2,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又由(1)知SKI

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論