




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
第11講拓展四:導(dǎo)數(shù)中的隱零點問題(精講+精練)目錄第一部分:知識點精準(zhǔn)記憶第二部分:典型例題剖析第三部分:第11講拓展四:導(dǎo)數(shù)中的隱零點問題(精練)第一部分:知識點精準(zhǔn)記憶第一部分:知識點精準(zhǔn)記憶1、不含參函數(shù)的隱零點問題已知不含參函數(shù)SKIPIF1<0,導(dǎo)函數(shù)方程SKIPIF1<0的根存在,卻無法求出,設(shè)方程SKIPIF1<0的根為SKIPIF1<0,則有:①關(guān)系式SKIPIF1<0成立;②注意確定SKIPIF1<0的合適范圍.2、含參函數(shù)的隱零點問題已知含參函數(shù)SKIPIF1<0,其中SKIPIF1<0為參數(shù),導(dǎo)函數(shù)方程SKIPIF1<0的根存在,卻無法求出,設(shè)方程SKIPIF1<0的根為SKIPIF1<0,則有①有關(guān)系式SKIPIF1<0成立,該關(guān)系式給出了SKIPIF1<0的關(guān)系;②注意確定SKIPIF1<0的合適范圍,往往和SKIPIF1<0的范圍有關(guān).3、函數(shù)零點的存在性(1)函數(shù)零點存在性定理:設(shè)函數(shù)SKIPIF1<0在閉區(qū)間SKIPIF1<0上連續(xù),且SKIPIF1<0,那么在開區(qū)間SKIPIF1<0內(nèi)至少有函數(shù)SKIPIF1<0的一個零點,即至少有一點SKIPIF1<0,使得SKIPIF1<0.①若SKIPIF1<0,則SKIPIF1<0的零點不一定只有一個,可以有多個②若SKIPIF1<0,那么SKIPIF1<0在SKIPIF1<0不一定有零點③若SKIPIF1<0在SKIPIF1<0有零點,則SKIPIF1<0不一定必須異號(3)若SKIPIF1<0在SKIPIF1<0上是單調(diào)函數(shù)且連續(xù),則SKIPIF1<0在SKIPIF1<0的零點唯一.第二部分:典型例題剖析第二部分:典型例題剖析1.(2022·全國·模擬預(yù)測(文))已知函數(shù)SKIPIF1<0.(1)若曲線SKIPIF1<0在SKIPIF1<0處的切線經(jīng)過點SKIPIF1<0,求實數(shù)a的值;(2)若對任意SKIPIF1<0,都有SKIPIF1<0(e為自然對數(shù)的底),求證:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【解析】(1)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,
所以曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,因為切線經(jīng)過點SKIPIF1<0,所以SKIPIF1<0解得SKIPIF1<0.(2)設(shè)SKIPIF1<0,則SKIPIF1<0,
設(shè)SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上遞增,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,所以SKIPIF1<0,
令SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0遞減,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【點睛】關(guān)鍵點點睛:此題考查導(dǎo)數(shù)的綜合應(yīng)用,考查導(dǎo)數(shù)的幾何意義,考查利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵是構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)求得SKIPIF1<0,再利用函數(shù)SKIPIF1<0的單調(diào)性結(jié)合SKIPIF1<0可證得結(jié)論,考查數(shù)學(xué)轉(zhuǎn)化思想,屬于較難題2.(2022·甘肅·一模(文))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)判斷函數(shù)SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時,關(guān)于x的不等式SKIPIF1<0恒成立,求實數(shù)b的取值范圍.【答案】(1)答案見解析;(2)SKIPIF1<0.【解析】(1)SKIPIF1<0的定義域為SKIPIF1<0,求導(dǎo)得:SKIPIF1<0,若SKIPIF1<0時,則SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0單調(diào)遞增;若SKIPIF1<0時,則當(dāng)SKIPIF1<0時SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,f(x)在SKIPIF1<0單調(diào)遞增.(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,由題意SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,又SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上有唯一零點SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0即SKIPIF1<0,SKIPIF1<0單調(diào)遞減;SKIPIF1<0時,SKIPIF1<0即SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0為SKIPIF1<0在定義域內(nèi)的最小值.即SKIPIF1<0令SKIPIF1<0,則方程SKIPIF1<0等價于SKIPIF1<0,又易知SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0所以,SKIPIF1<0的最小值SKIPIF1<0所以SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0【點睛】利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.3.(2022·重慶巴蜀中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù)).(1)求SKIPIF1<0的極值;(2)(i)證明∶SKIPIF1<0與SKIPIF1<0有相同的零點;(ii)若SKIPIF1<0恒成立,求整數(shù)a的最大值.【答案】(1)SKIPIF1<0的極小值為SKIPIF1<0,無極大值;(2)(i)證明見解析,(ii)SKIPIF1<0【解析】(1)由題意可知,SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)的遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)的遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0取得極小值為SKIPIF1<0,無極大值;(2)(i)由SKIPIF1<0知SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;由SKIPIF1<0知SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;又SKIPIF1<0,故必存在唯一SKIPIF1<0使得SKIPIF1<0,即有SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0有相同的唯一零點SKIPIF1<0;(ii)由SKIPIF1<0,得SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0恒成立,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由(i)知SKIPIF1<0單調(diào)遞增且SKIPIF1<0存在唯一零點SKIPIF1<0;則當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;故SKIPIF1<0;由(i)知SKIPIF1<0;又SKIPIF1<0,故進一步確定SKIPIF1<0;故SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0;所以整數(shù)a的最大值為SKIPIF1<0.【點睛】求解不等式問題的關(guān)鍵:適當(dāng)變形,靈活轉(zhuǎn)化,結(jié)合題設(shè)條件,有時需要對不等式進行“除法”變形,從而分離參數(shù),有時需要進行移項變形,可使不等式兩邊具有相同的結(jié)構(gòu)特點;構(gòu)造函數(shù),利用導(dǎo)數(shù)求解,若分離參數(shù),則直接構(gòu)造函數(shù),并借助導(dǎo)數(shù)加以求解,若轉(zhuǎn)化為不等式兩邊具有相同的結(jié)構(gòu)特點,則可根據(jù)該結(jié)構(gòu)特點構(gòu)造函數(shù),并借助導(dǎo)數(shù)加以求解.4.(2022·四川南充·二模(理))已知SKIPIF1<0.(1)求SKIPIF1<0在SKIPIF1<0的切線方程;(2)求證:SKIPIF1<0僅有一個極值;(3)若存在SKIPIF1<0,使SKIPIF1<0對任意SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)證明見解析(3)SKIPIF1<0【解析】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0得SKIPIF1<0,又SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0的切線方程為:SKIPIF1<0.即SKIPIF1<0;(2)SKIPIF1<0令SKIPIF1<0,由于SKIPIF1<0,得SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減.SKIPIF1<0所以存在唯一SKIPIF1<0,使得SKIPIF1<0.所以SKIPIF1<0于SKIPIF1<0單調(diào)遞增,SKIPIF1<0單調(diào)遞減.SKIPIF1<0,無極小值.所以SKIPIF1<0僅有一個極值.(3)任意SKIPIF1<0,則SKIPIF1<0.由(2)知SKIPIF1<0.又SKIPIF1<0,則SKIPIF1<0.若存在SKIPIF1<0,使SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,轉(zhuǎn)化為SKIPIF1<0.SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;所以SKIPIF1<0于SKIPIF1<0單調(diào)遞增,SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增當(dāng)SKIPIF1<0時,SKIPIF1<0由于SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0.SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0綜上:當(dāng)SKIPIF1<0時,SKIPIF1<0得SKIPIF1<0.故SKIPIF1<0.【點睛】不等式恒成立問題、存在性問題的求解,有相同點:即分離常數(shù)法.也有不同點,如SKIPIF1<0恒成立問題,轉(zhuǎn)化為SKIPIF1<0;SKIPIF1<0能成立問題,則轉(zhuǎn)化為SKIPIF1<0.5.(2022·河南洛陽·模擬預(yù)測(理))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時,求證:SKIPIF1<0.【答案】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上為單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上為單調(diào)遞減,在SKIPIF1<0上為單調(diào)遞增.(2)證明見見解析.【解析】(1)由已知條件得函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0①當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恒成立,故SKIPIF1<0在SKIPIF1<0上為單調(diào)遞增.②當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0故SKIPIF1<0在SKIPIF1<0上為單調(diào)遞減,在SKIPIF1<0上為單調(diào)遞增;綜上所述:當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上為單調(diào)遞增當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上為單調(diào)遞減,在SKIPIF1<0上為單調(diào)遞增(2)當(dāng)SKIPIF1<0時,SKIPIF1<0要證原式成立,需證SKIPIF1<0成立,即需證SKIPIF1<0成立,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,由零點存在性定理可知,存在SKIPIF1<0使SKIPIF1<0,則在SKIPIF1<0上SKIPIF1<0,在SKIPIF1<0上SKIPIF1<0,即在SKIPIF1<0上SKIPIF1<0,在SKIPIF1<0上SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0處取得最小值,由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,兩邊同取對數(shù)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0,即SKIPIF1<0成立,故當(dāng)SKIPIF1<0時,SKIPIF1<0成立.【點睛】關(guān)鍵點睛:本題考查利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,利用導(dǎo)數(shù)證明不等式.解答本題的關(guān)鍵是構(gòu)造函數(shù)SKIPIF1<0,分析其單調(diào)性,得出其最小值,從而得出函數(shù)在在SKIPIF1<0處取得最小值,而SKIPIF1<0滿足SKIPIF1<0,兩邊同取對數(shù)得SKIPIF1<0,從而得出最小值為0,從而得證.屬于難題.6.(2022·全國·模擬預(yù)測(理))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,若SKIPIF1<0滿足SKIPIF1<0,討論函數(shù)SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時,若SKIPIF1<0恒成立,試比較a和1.5625的大小.參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【答案】(1)SKIPIF1<0時SKIPIF1<0單調(diào)遞減;SKIPIF1<0時,SKIPIF1<0單調(diào)遞增(2)SKIPIF1<0【解析】(1)SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0均單調(diào)遞增,從而SKIPIF1<0是SKIPIF1<0上的增函數(shù),又SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0在SKIPIF1<0上的唯一零點,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增.(2)SKIPIF1<0,當(dāng)SKIPIF1<0時,原不等式可轉(zhuǎn)化為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0,又SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上存在唯一零點SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增.故SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,由于SKIPIF1<0,即SKIPIF1<0.【點睛】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間、極值、最值,當(dāng)求導(dǎo)一次無法解決問題時,可考慮利用二次求導(dǎo)來進行求解.7.(2022·湖北·石首市第一中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0的圖象在點SKIPIF1<0處的切線方程為SKIPIF1<0.(1)判斷函數(shù)SKIPIF1<0的單調(diào)性.(2)證明:當(dāng)SKIPIF1<0時,SKIPIF1<0.【答案】(1)答案見解析(2)證明見解析【解析】(1)解:因為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0.所以函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0,減區(qū)間為SKIPIF1<0.(2)證明:要證SKIPIF1<0,即證SKIPIF1<0,只需證SKIPIF1<0.令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.因為SKIPIF1<0,SKIPIF1<0,所以存在SKIPIF1<0,使SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0.【點睛】方法點睛:利用導(dǎo)數(shù)證明不等式問題,方法如下:(1)直接構(gòu)造函數(shù)法:證明不等式SKIPIF1<0(或SKIPIF1<0)轉(zhuǎn)化為證明SKIPIF1<0(或SKIPIF1<0),進而構(gòu)造輔助函數(shù)SKIPIF1<0;(2)適當(dāng)放縮構(gòu)造法:一是根據(jù)已知條件適當(dāng)放縮;二是利用常見放縮結(jié)論;(3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對原不等式同解變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).8.(2022·河南·平頂山市教育局教育教學(xué)研究室高二開學(xué)考試(文))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性.(2)當(dāng)SKIPIF1<0時,證明:SKIPIF1<0對SKIPIF1<0恒成立.【答案】(1)SKIPIF1<0單調(diào)區(qū)間、單調(diào)性見解析;(2)證明見解析.【解析】(1)因為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取“=”,則SKIPIF1<0在R上單調(diào)遞減,當(dāng)SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0,即存在SKIPIF1<0,使得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,于是得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,因此,SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0對SKIPIF1<0恒成立.【點睛】思路點睛:涉及雙變量的不等式證明問題,將所證不等式等價轉(zhuǎn)化,構(gòu)造新函數(shù),再借助導(dǎo)數(shù)探討函數(shù)的單調(diào)性、極(最)值問題處理.9.(2022·海南·嘉積中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù),SKIPIF1<0).(1)求SKIPIF1<0的單調(diào)區(qū)間和極值;(2)設(shè)SKIPIF1<0,若對任意的SKIPIF1<0,都有SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【答案】(1)答案見解析;(2)SKIPIF1<0﹒【解析】(1)SKIPIF1<0,x>0,當(dāng)SKIPIF1<0時,-a≥0,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,無極值;當(dāng)SKIPIF1<0時,令SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,極小值為SKIPIF1<0,無極大值.綜上,當(dāng)SKIPIF1<0時,SKIPIF1<0的增區(qū)間為SKIPIF1<0,無減區(qū)間,無極值;當(dāng)SKIPIF1<0時,SKIPIF1<0的減區(qū)間為SKIPIF1<0,增區(qū)間為SKIPIF1<0,極小值為SKIPIF1<0,無極大值.(2)∵對任意的SKIPIF1<0,不等式SKIPIF1<0恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上為增函數(shù),又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,又由SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,綜上所述,滿足條件SKIPIF1<0的取值范圍是SKIPIF1<0.【點睛】本題關(guān)鍵是參變分離不等式SKIPIF1<0,將問題轉(zhuǎn)化為求SKIPIF1<0在SKIPIF1<0時的最小值,轉(zhuǎn)化為通過導(dǎo)數(shù)SKIPIF1<0研究F(x)的單調(diào)性和最小值.在求解過程中,需要對導(dǎo)數(shù)二次求導(dǎo),從而判斷導(dǎo)數(shù)的零點,該零點為隱零點,故需采用隱零點的討論方法求解.在處理方程SKIPIF1<0時,還需要采用同構(gòu)思想構(gòu)造函數(shù)SKIPIF1<0,達到簡化的目的.10.(2022·全國·哈師大附中模擬預(yù)測(理))已知函數(shù)SKIPIF1<0(SKIPIF1<0,e為自然對數(shù)的底數(shù)).(1)若SKIPIF1<0在x=0處的切線與直線y=ax垂直,求a的值;(2)討論函數(shù)SKIPIF1<0的單調(diào)性;(3)當(dāng)SKIPIF1<0時,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)答案見解析(3)證明見解析【解析】(1)SKIPIF1<0,則SKIPIF1<0,由已知SKIPIF1<0,解得SKIPIF1<0(2)SKIPIF1<0(?。┊?dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;(ⅱ)當(dāng)SKIPIF1<0時,令SKIPIF1<0,得SKIPIF1<0,①SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;②SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;③SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.綜上,SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(3)方法一:SKIPIF1<0等價于SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0令SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增
∵SKIPIF1<0,∴存在SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增∴SKIPIF1<0∴SKIPIF1<0,故SKIPIF1<0方法二:當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0∴SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,SKIPIF1<0上單調(diào)遞增.∴SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0,【關(guān)鍵點點睛】解決本題的關(guān)鍵:一是導(dǎo)數(shù)幾何意義的運用,二是通過導(dǎo)函數(shù)等于零,比較方程的根對問題分類討論,三是隱零點的運用及放縮法的運用.11.(2022·河北衡水·高三階段練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0在SKIPIF1<0上的最大值與最小值之差;(2)若SKIPIF1<0,證明:SKIPIF1<0【答案】(1)SKIPIF1<0(2)證明見解析【解析】(1)由題意得SKIPIF1<0,則SKIPIF1<0,由于SKIPIF1<0都是遞增函數(shù),故SKIPIF1<0是遞減函數(shù),則SKIPIF1<0,故SKIPIF1<0為遞減函數(shù),則SKIPIF1<0,故SKIPIF1<0;(2)證明:由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,設(shè)SKIPIF1<0,令SKIPIF1<0,故SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,故存在SKIPIF1<0,使得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,故SKIPIF1<0,由于SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.12.(2022·江西宜春·模擬預(yù)測(理))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0有兩個不等實根SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0(2)證明見解析【解析】(1)解:因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0單調(diào)遞減;SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0;(2)由題意可知SKIPIF1<0,不妨設(shè)SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,于是原式SKIPIF1<0等價于SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,下面先證明,當(dāng)SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0時恒成立,∴欲證SKIPIF1<0,只需證明SKIPIF1<0即可.∴SKIPIF1<0,變形得,SKIPIF1<0,當(dāng)SKIPIF1<0時,顯然成立,所以SKIPIF1<0得證.【點睛】關(guān)鍵點點睛:本題第二問關(guān)鍵是由SKIPIF1<0兩邊取對數(shù),得到SKIPIF1<0,再結(jié)合SKIPIF1<0,不妨設(shè)SKIPIF1<0,令SKIPIF1<0,轉(zhuǎn)化為SKIPIF1<0而得證.13.(2022·江蘇·蘇州市蘇州高新區(qū)第一中學(xué)高二期中)已知函數(shù)SKIPIF1<0的圖象在點SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù))處的切線斜率為SKIPIF1<0.(1)求實數(shù)SKIPIF1<0的值;(2)若SKIPIF1<0,且存在SKIPIF1<0使SKIPIF1<0成立,求SKIPIF1<0的最小值.【答案】(1)1(2)4【解析】(1)由題意知:SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0;(2)由(1)知:SKIPIF1<0,存在SKIPIF1<0使SKIPIF1<0成立等價于SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單增,又SKIPIF1<0,故存在SKIPIF1<0使SKIPIF1<0,即SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0單減,故當(dāng)SKIPIF1<0時,SKIPIF1<0單增,故SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0的最小值為4.14.(2022·安徽省桐城中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0處取得最大值.(1)求a的取值范圍;(2)當(dāng)SKIPIF1<0時,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【解析】(1)顯然SKIPIF1<0,由已知SKIPIF1<0得SKIPIF1<0.故SKIPIF1<0.若SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)正數(shù)SKIPIF1<0時,SKIPIF1<0.SKIPIF1<0有最小值,不符合題意.若SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.SKIPIF1<0有最大值SKIPIF1<0,故a的取值范圍為SKIPIF1<0.(2)由(1)知SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時,因為SKIPIF1<0,只需證SKIPIF1<0,即證SKIPIF1<0令SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上為增函數(shù).所以SKIPIF1<0,所以存在SKIPIF1<0,使得SKIPIF1<0,此時SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0.故SKIPIF1<0.又因為SKIPIF1<0在SKIPIF1<0為減函數(shù),且SKIPIF1<0,所以SKIPIF1<0故當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.綜上,當(dāng)SKIPIF1<0時,SKIPIF1<0.解法二:由(1)知SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時,因為SKIPIF1<0,只需證SKIPIF1<0,即證SKIPIF1<0.令SKIPIF1<0在SKIPIF1<0上單遞增,所以SKIPIF1<0;令SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減.當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0所以SKIPIF1<0綜上,當(dāng)SKIPIF1<0時,SKIPIF1<0.【點睛】不等式證明問題是近年高考命題的熱點,利用導(dǎo)數(shù)證明不等式的方法主要有兩個:(1)不等式兩邊作差構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)最值即可;(2)觀察不等式的特點,結(jié)合已解答問題把要證的不等式變形,并運用已證結(jié)論先行放縮,再化簡或者進一步利用導(dǎo)數(shù)證明.第三部分:第11講拓展四:導(dǎo)數(shù)中的隱零點問題(精練)第三部分:第11講拓展四:導(dǎo)數(shù)中的隱零點問題(精練)1.(2022·天津市寧河區(qū)蘆臺第一中學(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0的極值;(2)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,求整數(shù)SKIPIF1<0的最小值;(3)若SKIPIF1<0,正實數(shù)SKIPIF1<0滿足SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)極大值為SKIPIF1<0,無極小值;(2)SKIPIF1<0;(3)證明見解析.【解析】(1)∵SKIPIF1<0,∴SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0,單調(diào)減區(qū)間為SKIPIF1<0,∴SKIPIF1<0有極大值為SKIPIF1<0,無極小值;(2)由SKIPIF1<0恒成立,得SKIPIF1<0在SKIPIF1<0上恒成立,問題等價于SKIPIF1<0在SKIPIF1<0上恒成立.令SKIPIF1<0,只要SKIPIF1<0.∵SKIPIF1<0.令SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.∵SKIPIF1<0,SKIPIF1<0,∴在(0,+)上存在唯一的SKIPIF1<0SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.∴當(dāng)SKIPIF1<0時,SKIPIF1<0,g(x)單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,g(x)單調(diào)遞減,∴SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴整數(shù)SKIPIF1<0的最小值為SKIPIF1<0;(3)由題可知SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0.∵SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年新教材高中歷史 第二單元 第6課 從隋唐盛世到五代十國教學(xué)實錄1 新人教版必修《中外歷史綱要(上)》
- 貴陽2025年貴州貴陽貴安事業(yè)單位招聘484人筆試歷年參考題庫附帶答案詳解
- 貴州2025年貴州省疾病預(yù)防控制中心招聘4人筆試歷年參考題庫附帶答案詳解
- 互聯(lián)網(wǎng)時代下的職場生存法則
- 公司資金監(jiān)管合同標(biāo)準(zhǔn)文本
- 2023七年級數(shù)學(xué)下冊 第一章 整式的乘除4 整式的乘法第2課時 單項式與多項式相乘教學(xué)實錄 (新版)北師大版
- 公司實習(xí)合同標(biāo)準(zhǔn)文本
- 豐南健康養(yǎng)生加盟合同標(biāo)準(zhǔn)文本
- 2025年香檸檬果提取化妝品項目發(fā)展計劃
- 2024年黑龍江省牡丹江市中考數(shù)學(xué)試卷【含解析】
- PAS 2050:2011-商品和服務(wù)在生命周期內(nèi)的溫室氣體排放評價規(guī)范(英文)
- 病例報告表(CRF)模板
- 光伏車棚施工方案
- 部編版道德與法治三年級下冊全冊教案
- 【道德與法治】江蘇省連云港市海州區(qū)2023-2024學(xué)年七年級下學(xué)期期中試題(解析版)
- 鹽城市射陽縣興橋鎮(zhèn)社區(qū)工作者考試題目及答案2024
- 齊魯針灸智慧樹知到期末考試答案2024年
- 2024年內(nèi)蒙古聚英人力資源服務(wù)中心招聘歷年高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 高數(shù)函數(shù)的極值與最大最小值課件
- 廣東省廣州市廣雅中學(xué)2024屆高考英語三模試卷含解析
- 《金融建?;A(chǔ)》課件第7章-運用 Python 分析債券
評論
0/150
提交評論