2025屆湖南省百所重點高中高考數(shù)學倒計時模擬卷含解析_第1頁
2025屆湖南省百所重點高中高考數(shù)學倒計時模擬卷含解析_第2頁
2025屆湖南省百所重點高中高考數(shù)學倒計時模擬卷含解析_第3頁
2025屆湖南省百所重點高中高考數(shù)學倒計時模擬卷含解析_第4頁
2025屆湖南省百所重點高中高考數(shù)學倒計時模擬卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖南省百所重點高中高考數(shù)學倒計時模擬卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知中,角、所對的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件2.如圖,正方形網(wǎng)格紙中的實線圖形是一個多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對 B.3對C.4對 D.5對3.某程序框圖如圖所示,若輸出的,則判斷框內為()A. B. C. D.4.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.85.函數(shù)且的圖象是()A. B.C. D.6.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.7.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.8.關于函數(shù)在區(qū)間的單調性,下列敘述正確的是()A.單調遞增 B.單調遞減 C.先遞減后遞增 D.先遞增后遞減9.點為的三條中線的交點,且,,則的值為()A. B. C. D.10.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題11.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.12.已知函數(shù),當時,恒成立,則的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是定義在上的奇函數(shù),當時,,則不等式的解集用區(qū)間表示為__________.14.三棱柱中,,側棱底面,且三棱柱的側面積為.若該三棱柱的頂點都在同一個球的表面上,則球的表面積的最小值為_____.15.若實數(shù)x,y滿足約束條件,則的最大值為________.16.已知向量,若向量與共線,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線與直線的直角坐標方程;(2)若曲線與直線交于兩點,求的值.18.(12分)已知函數(shù),(1)求函數(shù)的單調區(qū)間;(2)當時,判斷函數(shù),()有幾個零點,并證明你的結論;(3)設函數(shù),若函數(shù)在為增函數(shù),求實數(shù)的取值范圍.19.(12分)已知動圓經(jīng)過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標準方程;(2)設點的橫坐標為,,為圓與曲線的公共點,若直線的斜率,且,求的值.20.(12分)在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。(1)寫出直線l的普通方程和曲線C的直角坐標方程:(2)若成等比數(shù)列,求a的值。21.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調遞增區(qū)間及圖象的對稱軸方程.22.(10分)已知橢圓的離心率為,直線過橢圓的右焦點,過的直線交橢圓于兩點(均異于左、右頂點).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點.若直線交于點,直線交于點,試判斷是否為定值,若是,求出定值;若不是,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由大邊對大角定理結合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對的邊分別是、,由大邊對大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點睛】本題考查充分條件、必要條件的判斷,考查三角形的性質等基礎知識,考查邏輯推理能力,是基礎題.2、C【解析】

畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對.【點睛】本題考查了空間幾何體的三視圖,考查了四棱錐的結構特征,考查了面面垂直的證明,屬于中檔題.3、C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應為k>5?本題選擇C選項.點睛:使用循環(huán)結構尋數(shù)時,要明確數(shù)字的結構特征,決定循環(huán)的終止條件與數(shù)的結構特征的關系及循環(huán)次數(shù).尤其是統(tǒng)計數(shù)時,注意要統(tǒng)計的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.4、A【解析】

先將除A,B以外的兩人先排,再將A,B在3個空位置里進行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進行插空,有種,所以共有種.故選:A【點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎題.5、B【解析】

先判斷函數(shù)的奇偶性,再取特殊值,利用零點存在性定理判斷函數(shù)零點分布情況,即可得解.【詳解】由題可知定義域為,,是偶函數(shù),關于軸對稱,排除C,D.又,,在必有零點,排除A.故選:B.【點睛】本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質,屬于中檔題.6、D【解析】

依次將選項中的代入,結合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當時,在上不單調,故A不正確;當時,在上單調遞減,故B不正確;當時,在上不單調,故C不正確;當時,在上單調遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數(shù)的單調性,涉及到誘導公式的應用,是一道容易題.7、A【解析】

由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設,得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是由向量數(shù)量積為0得出垂直關系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關系.8、C【解析】

先用誘導公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數(shù)的平移與單調性的求解.屬于基礎題.9、B【解析】

可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進行數(shù)量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.10、D【解析】

舉例判斷命題p與q的真假,再由復合命題的真假判斷得答案.【詳解】當時,故命題為假命題;記f(x)=ex﹣x的導數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點睛】本題考查復合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質,是基礎題.11、D【解析】

根據(jù)題意畫出幾何關系,由四邊形的內切圓面積求得半徑,結合四邊形面積關系求得與等量關系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關系如下圖所示:設四邊形的內切圓半徑為,雙曲線半焦距為,則所以,四邊形的內切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.12、A【解析】

分析可得,顯然在上恒成立,只需討論時的情況即可,,然后構造函數(shù),結合的單調性,不等式等價于,進而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當時,等價于,因為,所以.設,由,顯然在上單調遞增,因為,所以等價于,即,則.設,則.令,解得,易得在上單調遞增,在上單調遞減,從而,故.故選:A.【點睛】本題考查了不等式恒成立問題,利用函數(shù)單調性是解決本題的關鍵,考查了學生的推理能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設,則,由題意可得故當時,由不等式,可得,或求得,或故答案為(14、【解析】

分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設棱柱的底面邊長為,高為,則三棱柱的側面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設,∴三棱柱的側面積為∴又外接球半徑∴外接球表面積.故答案為:【點睛】考查學生對幾何體的正確認識,能通過題意了解到題目傳達的意思,培養(yǎng)學生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題15、3【解析】

作出可行域,可得當直線經(jīng)過點時,取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯(lián)立,可求得點,當直線經(jīng)過點時,.故答案為:3.【點睛】本題考查線性規(guī)劃,考查數(shù)形結合的數(shù)學思想,屬于基礎題.16、【解析】

計算得到,根據(jù)向量平行計算得到答案.【詳解】由題意可得,因為與共線,所以有,即,解得.故答案為:.【點睛】本題考查了根據(jù)向量平行求參數(shù),意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)曲線的直角坐標方程為;直線的直角坐標方程為(2)【解析】

(1)由公式可化極坐標方程為直角坐標方程,消參法可化參數(shù)方程為普通方程;(2)聯(lián)立兩曲線方程,解方程組得兩交點坐標,從而得兩點間距離.【詳解】解:(1)曲線的直角坐標方程為直線的直角坐標方程為(2)據(jù)解,得或【點睛】本題考查極坐標與直角坐標的互化,考查參數(shù)方程與普通方程的互化,屬于基礎題.18、(1)單調增區(qū)間,單調減區(qū)間為,;(2)有2個零點,證明見解析;(3)【解析】

對函數(shù)求導,利用導數(shù)的正負判斷函數(shù)的單調區(qū)間即可;函數(shù)有2個零點.根據(jù)函數(shù)的零點存在性定理即可證明;記函數(shù),求導后利用單調性求得,由零點存在性定理及單調性知存在唯一的,使,求得為分段函數(shù),求導后分情況討論:①當時,利用函數(shù)的單調性將問題轉化為的問題;②當時,當時,在上恒成立,從而求得的取值范圍.【詳解】(1)由題意知,,列表如下:020極小值極大值所以函數(shù)的單調增區(qū)間為,單調減區(qū)間為,.(2)函數(shù)有2個零點.證明如下:因為時,所以,因為,所以在恒成立,在上單調遞增,由,,且在上單調遞增且連續(xù)知,函數(shù)在上僅有一個零點,由(1)可得時,,即,故時,,所以,由得,平方得,所以,因為,所以在上恒成立,所以函數(shù)在上單調遞減,因為,所以,由,,且在上單調遞減且連續(xù)得在上僅有一個零點,綜上可知:函數(shù)有2個零點.(3)記函數(shù),下面考察的符號.求導得.當時恒成立.當時,因為,所以.∴在上恒成立,故在上單調遞減.∵,∴,又因為在上連續(xù),所以由函數(shù)的零點存在性定理得存在唯一的,使,∴,因為,所以∴因為函數(shù)在上單調遞增,,所以在,上恒成立.①當時,在上恒成立,即在上恒成立.記,則,當變化時,,變化情況如下表:極小值∴,故,即.②當時,,當時,在上恒成立.綜合(1)(2)知,實數(shù)的取值范圍是.【點睛】本題考查利用導數(shù)求函數(shù)的單調區(qū)間、極值、最值和利用零點存在性定理判斷函數(shù)零點個數(shù)、利用分離參數(shù)法求參數(shù)的取值范圍;考查轉化與化歸能力、邏輯推理能力、運算求解能力;通過構造函數(shù),利用零點存在性定理判斷其零點,從而求出函數(shù)的表達式是求解本題的關鍵;屬于綜合型強、難度大型試題.19、見解析【解析】

(1)設,則點到軸的距離為,因為圓被軸截得的弦長為,所以,又,所以,化簡可得,所以曲線的標準方程為.(2)設,,因為直線的斜率,所以可設直線的方程為,由及,消去可得,所以,,所以.設線段的中點為,點的縱坐標為,則,,所以直線的斜率為,所以,所以,所以.易得圓心到直線的距離,由圓經(jīng)過點,可得,所以,整理可得,解得或,所以或,又,所以.20、(1)l的普通方程;C的直角坐標方程;(2).【解析】

(1)利用極坐標與直角坐標的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論