




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題27圓錐曲線中的面積問題考試時間:120分鐘滿分:150分一、單選題:本大題共8小題,每個小題5分,共40分.在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知SKIPIF1<0是拋物線SKIPIF1<0上一點(diǎn),SKIPIF1<0為拋物線的焦點(diǎn),點(diǎn)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的面積為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】拋物線SKIPIF1<0,焦點(diǎn)坐標(biāo)SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,由拋物線的定義可知,SKIPIF1<0等于SKIPIF1<0到準(zhǔn)線的距離,即SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0.故選:C.2.已知點(diǎn)SKIPIF1<0是橢圓SKIPIF1<0上一點(diǎn),橢圓的左、右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的面積為(
)A.6 B.12 C.SKIPIF1<0 D.SKIPIF1<0【解析】由橢圓SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.
設(shè)SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,由余弦定理可得:SKIPIF1<0,可得SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0.故選:C.3.已知SKIPIF1<0是拋物線SKIPIF1<0的準(zhǔn)線,SKIPIF1<0為SKIPIF1<0的焦點(diǎn),SKIPIF1<0分別為SKIPIF1<0和SKIPIF1<0上的兩點(diǎn),SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,且四邊形SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】由拋物線定義及SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0為直角梯形,又SKIPIF1<0,則SKIPIF1<0,即△SKIPIF1<0為等邊三角形,所以SKIPIF1<0,在Rt△SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,故四邊形SKIPIF1<0的面積為SKIPIF1<0,可得SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,故拋物線為SKIPIF1<0.故選:D4.已知雙曲線SKIPIF1<0的左右焦點(diǎn)為SKIPIF1<0,P為右支上除頂點(diǎn)外的任意一點(diǎn),圓I為SKIPIF1<0的內(nèi)切圓,且與x軸切于A點(diǎn),過SKIPIF1<0作SKIPIF1<0,垂足為B,若SKIPIF1<0,則SKIPIF1<0的面積為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.9 D.2【解析】由題意知:SKIPIF1<0,內(nèi)切圓與SKIPIF1<0軸的切點(diǎn)是點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,圓I與SKIPIF1<0切于SKIPIF1<0點(diǎn),與SKIPIF1<0切于SKIPIF1<0點(diǎn),連接SKIPIF1<0,由SKIPIF1<0及圓的切線的性質(zhì)知,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),由圓的切線的性質(zhì)知,SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,設(shè)內(nèi)切圓I的圓心橫坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,有:SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0.故選:B.5.已知直線l:SKIPIF1<0與x軸、y軸分別交于M,N兩點(diǎn),動直線SKIPIF1<0:SKIPIF1<0和SKIPIF1<0:SKIPIF1<0交于點(diǎn)P,則SKIPIF1<0的面積的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】根據(jù)題意可知,動直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,動直線SKIPIF1<0:SKIPIF1<0,即SKIPIF1<0過定點(diǎn)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以無論m取何值,都有SKIPIF1<0,所以點(diǎn)P在以O(shè)B為直徑的圓上,且圓心坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,設(shè)SKIPIF1<0,則點(diǎn)P的軌跡方程為SKIPIF1<0,圓心到直線l的距離為SKIPIF1<0,則P到直線l的距離的最小值為SKIPIF1<0.由題可知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的面積的最小值為SKIPIF1<0.故選:B
6.已知過拋物線C:SKIPIF1<0的焦點(diǎn)SKIPIF1<0的直線與拋物線C交于A,B兩點(diǎn)(A在第一象限),以AB為直徑的圓E與拋物線C的準(zhǔn)線相切于點(diǎn)D.若SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),則SKIPIF1<0的面積為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.4【解析】依題意,SKIPIF1<0,所以拋物線SKIPIF1<0的方程為SKIPIF1<0.依題意可知SKIPIF1<0與拋物線的準(zhǔn)線SKIPIF1<0垂直,在直角三角形SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0消去SKIPIF1<0并化簡得SKIPIF1<0,易得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,原點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0.故選:B
7.已知拋物線C:SKIPIF1<0,O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線的焦點(diǎn),直線OA,OB的斜率分別為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,直線AB與x軸的交點(diǎn)為P,則SKIPIF1<0的面積的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】不妨設(shè)直線AB的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,消去x并整理得SKIPIF1<0,不妨設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由韋達(dá)定理得SKIPIF1<0,SKIPIF1<0,因?yàn)锳、B是拋物線C上兩點(diǎn),OB的斜率分別為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,此時SKIPIF1<0,則直線AB的方程為SKIPIF1<0,因?yàn)橹本€AB與x軸的交點(diǎn)為P,所以SKIPIF1<0,易知拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0的面積取得最小值SKIPIF1<0.故選:B.
8.已知SKIPIF1<0,SKIPIF1<0分別為雙曲線SKIPIF1<0的左、右焦點(diǎn),直線SKIPIF1<0過點(diǎn)SKIPIF1<0,且與雙曲線右支交于A,SKIPIF1<0兩點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0、SKIPIF1<0的內(nèi)切圓的圓心分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0面積的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】設(shè)圓SKIPIF1<0與SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別切于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由雙曲線定義知,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,即點(diǎn)SKIPIF1<0為雙曲線的右頂點(diǎn).∵SKIPIF1<0軸,∴SKIPIF1<0的橫坐標(biāo)為1,同理:SKIPIF1<0橫坐標(biāo)也為1.∵SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0.∴SKIPIF1<0,設(shè)SKIPIF1<0、SKIPIF1<0的內(nèi)切圓半徑分別為SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0軸,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0.設(shè)直線SKIPIF1<0傾斜角為SKIPIF1<0,又SKIPIF1<0為雙曲線右支上兩點(diǎn),又漸近線方程為SKIPIF1<0,∴由題意得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0∴SKIPIF1<0.故選:B.二、多選題:本大題共4小題,每個小題5分,共20分.在每小題給出的選項(xiàng)中,只有一項(xiàng)或者多項(xiàng)是符合題目要求的.9.已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線交拋物線SKIPIF1<0于SKIPIF1<0兩點(diǎn),則(
)A.SKIPIF1<0B.SKIPIF1<0C.以線段SKIPIF1<0為直徑的圓一定與直線SKIPIF1<0相切D.SKIPIF1<0的面積的最小值為4【解析】對于選項(xiàng)A,因?yàn)閽佄锞€SKIPIF1<0的準(zhǔn)線為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故選項(xiàng)A錯誤.對于選項(xiàng)B,拋物線SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線方程為SKIPIF1<0,則SKIPIF1<0整理可得SKIPIF1<0,設(shè)SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,故選項(xiàng)B正確.對于選項(xiàng)C,設(shè)SKIPIF1<0的中點(diǎn)為SKIPIF1<0,則點(diǎn)SKIPIF1<0到SKIPIF1<0軸的距離SKIPIF1<0,所以以線段SKIPIF1<0為直徑的圓一定與直線SKIPIF1<0相切,所以選項(xiàng)C正確.對于選項(xiàng)D,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,故選項(xiàng)D正確.故選:BCD.10.設(shè)拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),直線SKIPIF1<0與C交于A,B兩點(diǎn),以AB為直徑的圓與y軸交于D,E兩點(diǎn),則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0是鈍角 D.SKIPIF1<0的面積小于SKIPIF1<0的面積【解析】直線SKIPIF1<0過拋物線焦點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,A錯誤;SKIPIF1<0中點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,圓方程為:SKIPIF1<0,取SKIPIF1<0得到SKIPIF1<0,SKIPIF1<0,B正確;不妨取SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0不共線,故SKIPIF1<0是鈍角,C正確;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,D正確;故選:BCD11.已知橢圓SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的右焦點(diǎn),SKIPIF1<0為SKIPIF1<0的左頂點(diǎn),SKIPIF1<0為直線SKIPIF1<0SKIPIF1<0與SKIPIF1<0的兩個交點(diǎn),則(
)A.SKIPIF1<0的取值范圍是SKIPIF1<0 B.SKIPIF1<0周長的最小值為SKIPIF1<0C.SKIPIF1<0的面積的最大值為SKIPIF1<0 D.直線SKIPIF1<0與SKIPIF1<0的斜率之積為SKIPIF1<0【解析】對于橢圓SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0為直線SKIPIF1<0SKIPIF1<0與SKIPIF1<0的兩個交點(diǎn),顯然直線的斜率不為SKIPIF1<0,且SKIPIF1<0、SKIPIF1<0不可能在SKIPIF1<0軸上,SKIPIF1<0、SKIPIF1<0兩點(diǎn)關(guān)于原點(diǎn)對稱,所以SKIPIF1<0,即SKIPIF1<0,故A正確;設(shè)橢圓的左焦點(diǎn)為SKIPIF1<0,根據(jù)對稱性可得SKIPIF1<0,所以SKIPIF1<0,要使SKIPIF1<0周長的最小,只需SKIPIF1<0取得最小值,由橢圓的性質(zhì)可知SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取最小值,即SKIPIF1<0、SKIPIF1<0分別在上、下頂點(diǎn)時,故B正確;設(shè)SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取最大值,即SKIPIF1<0、SKIPIF1<0分別在上、下頂點(diǎn)時,故C錯誤;由SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故D正確;故選:ABD12.已知橢圓SKIPIF1<0的左,右焦點(diǎn)分別為SKIPIF1<0,過點(diǎn)SKIPIF1<0垂直于x軸的直線交橢圓C于A,B兩點(diǎn),SKIPIF1<0,若點(diǎn)P是橢圓C上的動點(diǎn),則下列說法正確的是(
)A.SKIPIF1<0的最小值為SKIPIF1<0B.SKIPIF1<0的面積的最大值為SKIPIF1<0C.SKIPIF1<0的取值范圍為SKIPIF1<0D.C上有且只有4個點(diǎn)P,使得SKIPIF1<0是直角三角形【解析】由題意得SKIPIF1<0是等邊三角形,所以SKIPIF1<0的周長為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以橢圓SKIPIF1<0,對于A,當(dāng)點(diǎn)SKIPIF1<0位于上下頂點(diǎn)時,SKIPIF1<0最大,此時SKIPIF1<0的最小為SKIPIF1<0,故A錯誤;對于B,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的面積的最大值為SKIPIF1<0,故B正確;對于C,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故C正確;對于D,由A選項(xiàng)可知,SKIPIF1<0最大時為銳角,所以以點(diǎn)SKIPIF1<0為直角頂點(diǎn)的SKIPIF1<0不存在,以點(diǎn)SKIPIF1<0為直角頂點(diǎn)的SKIPIF1<0分別有2個,所以C上有且只有4個點(diǎn)P,使得SKIPIF1<0是直角三角形,故D正確.故選:BCD.三、填空題:本大題共4小題,每小題5分,共20分.把答案填在答題卡中的橫線上.13.設(shè)SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0:SKIPIF1<0的兩個焦點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),點(diǎn)P在SKIPIF1<0的右支上,且SKIPIF1<0,則SKIPIF1<0的面積為.【解析】由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0.不妨設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)SKIPIF1<0在以SKIPIF1<0為直徑的圓上,所以SKIPIF1<0是以SKIPIF1<0為直角頂點(diǎn)的直角三角形.故SKIPIF1<0.又因?yàn)辄c(diǎn)SKIPIF1<0在雙曲線的右支上,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故答案為:8.14.已知拋物線SKIPIF1<0的焦點(diǎn)為F,過點(diǎn)F作兩條互相垂直的直線SKIPIF1<0,SKIPIF1<0,且直線SKIPIF1<0,SKIPIF1<0分別與拋物線C交于A,B和D,E,則四邊形ADBE面積的最小值是.【解析】由題意可得SKIPIF1<0,直線SKIPIF1<0的斜率存在且不為0,
設(shè)直線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由于直線SKIPIF1<0,SKIPIF1<0互相垂直,則SKIPIF1<0,聯(lián)立SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,從而SKIPIF1<0,同理可得SKIPIF1<0,四邊形SKIPIF1<0的面積SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,即四邊形ADBE面積的最小值是128,15.已知拋物線SKIPIF1<0,圓SKIPIF1<0,設(shè)SKIPIF1<0為坐標(biāo)原點(diǎn),過圓心SKIPIF1<0的直線與圓SKIPIF1<0交于點(diǎn)SKIPIF1<0,直線SKIPIF1<0分別交拋物線SKIPIF1<0于點(diǎn)SKIPIF1<0(點(diǎn)SKIPIF1<0不與點(diǎn)SKIPIF1<0重合).記SKIPIF1<0的面積為SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0的最大值.【解析】由題意,知直線AB的斜率不為0,故設(shè)直線AB的方程為x=my+4,如圖,設(shè)SKIPIF1<0.將直線AB的方程代入圓E的方程中,消去x,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0.直線OA的方程為SKIPIF1<0,代入拋物線方程SKIPIF1<0,消去x,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0.同理,得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以當(dāng)m=0時,SKIPIF1<0取得最大值,為SKIPIF1<0.
16.拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形常被稱為阿基米德三角形.阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點(diǎn),則過弦的端點(diǎn)的兩條切線的交點(diǎn)在其準(zhǔn)線上.設(shè)拋物線SKIPIF1<0,弦AB過焦點(diǎn),SKIPIF1<0為其阿基米德三角形,則SKIPIF1<0的面積的最小值為.【解析】設(shè)SKIPIF1<0,直線SKIPIF1<0,聯(lián)立SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0.設(shè)過點(diǎn)SKIPIF1<0的切線方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,整理得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,則過點(diǎn)A的切線方程分別為:SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,同理可得過點(diǎn)SKIPIF1<0的切線斜率為SKIPIF1<0,過點(diǎn)B的切線方程為:SKIPIF1<0,因?yàn)閮蓷l切線的交點(diǎn)SKIPIF1<0在準(zhǔn)線上,所以SKIPIF1<0,兩式相減得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,又因?yàn)橹本€SKIPIF1<0的斜率為SKIPIF1<0,SKIPIF1<0(SKIPIF1<0也成立),如圖,設(shè)準(zhǔn)線與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,SKIPIF1<0的面積SKIPIF1<0,當(dāng)SKIPIF1<0軸時,SKIPIF1<0最短(最短為SKIPIF1<0),SKIPIF1<0也最短(最短為SKIPIF1<0),此時SKIPIF1<0的面積取最小值SKIPIF1<0.四、解答題:本大題共6小題,共70分.解答應(yīng)寫出必要的文字說明、證明過程或演算步驟.17.已知橢圓SKIPIF1<0的一個焦點(diǎn)為SKIPIF1<0,且過點(diǎn)SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),求SKIPIF1<0面積的最大值及此時直線SKIPIF1<0的方程.【解析】(1)由題意得SKIPIF1<0,解得SKIPIF1<0,所以橢圓SKIPIF1<0的方程為SKIPIF1<0,(2)設(shè)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0的面積為SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,所以SKIPIF1<0面積的最大值為SKIPIF1<0,此時直線SKIPIF1<0的方程為SKIPIF1<0.18.橢圓SKIPIF1<0的左頂點(diǎn)為SKIPIF1<0,右頂點(diǎn)為SKIPIF1<0,滿足SKIPIF1<0,且橢圓SKIPIF1<0的離心率為SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)已知點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0的內(nèi)部,直線SKIPIF1<0和直線SKIPIF1<0分別與橢圓SKIPIF1<0交于另外的點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0,若SKIPIF1<0的面積為SKIPIF1<0,求SKIPIF1<0的值.【解析】(1)由題意,SKIPIF1<0,得SKIPIF1<0.離心率SKIPIF1<0,得SKIPIF1<0,所以橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0;(2)設(shè)SKIPIF1<0,點(diǎn)SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.與橢圓方程聯(lián)立得:SKIPIF1<0,解得:SKIPIF1<0.點(diǎn)SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0.與橢圓方程聯(lián)立得:SKIPIF1<0,解得:SKIPIF1<0.三角形面積比SKIPIF1<0SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,由題意,SKIPIF1<0,整理得SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.又由點(diǎn)SKIPIF1<0在橢圓內(nèi)部,故SKIPIF1<0,即SKIPIF1<0.
19.設(shè)橢圓SKIPIF1<0的左?右頂點(diǎn)分別為SKIPIF1<0,且焦距為SKIPIF1<0.點(diǎn)SKIPIF1<0在橢圓上且異于SKIPIF1<0兩點(diǎn),若直線SKIPIF1<0與SKIPIF1<0的斜率之積為SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)過點(diǎn)SKIPIF1<0作不與SKIPIF1<0軸重合的直線與橢圓SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0的方程為:SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0垂直于直線SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0.求SKIPIF1<0面積的最大值.【解析】(1)由題意知:SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為:SKIPIF1<0.(2)
設(shè)直線SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,顯然SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0方程為:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0過定點(diǎn)SKIPIF1<0;而SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,有SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0取最小值4,于是當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0面積的最大值是SKIPIF1<0.20.已知SKIPIF1<0的兩頂點(diǎn)坐標(biāo)SKIPIF1<0,SKIPIF1<0.(1)求動點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程;(2)不垂直于SKIPIF1<0軸的動直線SKIPIF1<0與軌跡SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),定點(diǎn)SKIPIF1<0,若直線SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,求SKIPIF1<0面積的取值范圍.【解析】(1)在SKIPIF1<0中,由SKIPIF1<0,得SKIPIF1<0,由正弦定理得SKIPIF1<0,因此動點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0是以SKIPIF1<0為左右焦點(diǎn),長軸長SKIPIF1<0的橢圓(點(diǎn)SKIPIF1<0外),顯然此橢圓半焦距SKIPIF1<0,短半軸長SKIPIF1<0,所以動點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程為SKIPIF1<0.(2)依題意,直線SKIPIF1<0不垂直于坐標(biāo)軸,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0SKIPIF1<0,點(diǎn)SKIPIF1<0,由SKIPIF1<0消去x并整理得:SKIPIF1<0,SKIPIF1<0,化為SKIPIF1<0,SKIPIF1<0,由直線SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,得直線SKIPIF1<0的斜率互為相反數(shù),即SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,于是SKIPIF1<0,化簡得SKIPIF1<0,即有SKIPIF1<0,滿足SKIPIF1<0,因此直線SKIPIF1<0經(jīng)過定點(diǎn)SKIPIF1<0,則SKIPIF1<0面積SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,于是SKIPIF1<0,即SKIPIF1<0,從而SKIPIF1<0,所以SKIPIF1<0面積的取值范圍是SKIPIF1<0.21.設(shè)拋物線方程為SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線SKIPIF1<0分別與拋物線相切于SKIPIF1<0兩點(diǎn),且點(diǎn)SKIPIF1<0在SKIPIF1<0軸下方,點(diǎn)SKIPIF1<0在SKIPIF1<0軸上方.(1)當(dāng)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0時,求SKIPIF1<0;(2)點(diǎn)SKIPIF1<0在拋物線上,且在SKIPIF1<0軸下方,直線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,直線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,且SKIPIF1<0.若SKIPIF1<0的重心在SKIPIF1<0軸上,求SKIPIF1<0的最大值.(注:SKIPIF1<0表示三角形的面積)【解析】(1)解法一:設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0,當(dāng)SKIPIF1<0,所以SKIPIF1<0,直線SKIPIF1<0的斜率SKIPIF1<0,直線SKIPIF1<0:SKIPIF1<0,又∵SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45206-2025道地藥材生產(chǎn)技術(shù)規(guī)程丹參
- 幾分包合同范本
- 農(nóng)村耕地流轉(zhuǎn)合同范本
- 產(chǎn)品免責(zé)合同范本
- 倉儲臨時合同范本
- 化妝產(chǎn)品合同范本
- 信息驗(yàn)收合同范例
- 書法裝裱售賣合同范本
- 農(nóng)村集體資源招租合同范本
- 免除追償工傷合同范本
- 2024年-ITSS新標(biāo)準(zhǔn)培訓(xùn)學(xué)習(xí)材料
- 第2課《讓美德照亮幸福人生》第2框《做守家庭美德的好成員》-【中職專用】《職業(yè)道德與法治》同步課堂課件
- (正式版)SHT 3227-2024 石油化工裝置固定水噴霧和水(泡沫)噴淋滅火系統(tǒng)技術(shù)標(biāo)準(zhǔn)
- 2024屆廣東省深圳市中考物理模擬試卷(一模)(附答案)
- 前庭功能鍛煉科普知識講座
- 供應(yīng)鏈戰(zhàn)略布局與區(qū)域拓展案例
- 上海話培訓(xùn)課件
- 注塑車間績效考核方案
- 初中英語閱讀理解專項(xiàng)練習(xí)26篇(含答案)
- 誦讀經(jīng)典傳承文明課件
- 高中數(shù)學(xué)選擇性必修3 教材習(xí)題答案
評論
0/150
提交評論