2025屆浙江省杭州市西湖高中高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
2025屆浙江省杭州市西湖高中高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
2025屆浙江省杭州市西湖高中高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
2025屆浙江省杭州市西湖高中高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
2025屆浙江省杭州市西湖高中高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆浙江省杭州市西湖高中高三3月份第一次模擬考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在正四棱柱中,,分別為的中點(diǎn),異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且2.如圖,在直三棱柱中,,,點(diǎn)分別是線段的中點(diǎn),,分別記二面角,,的平面角為,則下列結(jié)論正確的是()A. B. C. D.3.已知函數(shù),若函數(shù)在上有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.4.過拋物線()的焦點(diǎn)且傾斜角為的直線交拋物線于兩點(diǎn).,且在第一象限,則()A. B. C. D.5.已知點(diǎn),點(diǎn)在曲線上運(yùn)動(dòng),點(diǎn)為拋物線的焦點(diǎn),則的最小值為()A. B. C. D.46.設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)7.某幾何體的三視圖如圖所示,則該幾何體中的最長(zhǎng)棱長(zhǎng)為()A. B. C. D.8.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.9.設(shè)集合,,則集合A. B. C. D.10.以下三個(gè)命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;②若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;③對(duì)分類變量與的隨機(jī)變量的觀測(cè)值來說,越小,判斷“與有關(guān)系”的把握越大;其中真命題的個(gè)數(shù)為()A.3 B.2 C.1 D.011.函數(shù)在的圖象大致為()A. B.C. D.12.已知斜率為2的直線l過拋物線C:的焦點(diǎn)F,且與拋物線交于A,B兩點(diǎn),若線段AB的中點(diǎn)M的縱坐標(biāo)為1,則p=()A.1 B. C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且,,,則_______.14.已知無(wú)蓋的圓柱形桶的容積是立方米,用來做桶底和側(cè)面的材料每平方米的價(jià)格分別為30元和20元,那么圓桶造價(jià)最低為________元.15.《九章算術(shù)》卷5《商功》記載一個(gè)問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術(shù)曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長(zhǎng)的平方高),則由此可推得圓周率的取值為________.16.設(shè)實(shí)數(shù)滿足約束條件,則的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數(shù).(1)若函數(shù)在上為減函數(shù),求實(shí)數(shù)的取值范圍;(2)求證:對(duì)上的任意兩個(gè)實(shí)數(shù),,總有成立.18.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點(diǎn),平面平面,.(1)求證:平面;(2)求證:平面.19.(12分)已知函數(shù),,且.(1)當(dāng)時(shí),求函數(shù)的減區(qū)間;(2)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;(3)若方程的兩個(gè)實(shí)數(shù)根是,試比較,與的大小,并說明理由.20.(12分)在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心為(2,),半徑為1的圓.(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;(2)設(shè)M為曲線C1上的點(diǎn),N為曲線C2上的點(diǎn),求|MN|的取值范圍.21.(12分)在直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,直線的參數(shù)方程為(為參數(shù),為常數(shù),且).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,建立極坐標(biāo)系,圓的極坐標(biāo)方程為.設(shè)點(diǎn)在圓外.(1)求的取值范圍.(2)設(shè)直線與圓相交于兩點(diǎn),若,求的值.22.(10分)已知橢圓的短軸的兩個(gè)端點(diǎn)分別為、,焦距為.(1)求橢圓的方程;(2)已知直線與橢圓有兩個(gè)不同的交點(diǎn)、,設(shè)為直線上一點(diǎn),且直線、的斜率的積為.證明:點(diǎn)在軸上.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B【點(diǎn)睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運(yùn)算求解的能力,屬于中檔題.2、D【解析】

過點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法求解二面角的余弦值得答案.【詳解】解:因?yàn)椋?,所以,即過點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,,,,0,,,1,,,,,,,設(shè)平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點(diǎn)睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.3、B【解析】

根據(jù)分段函數(shù),分當(dāng),,將問題轉(zhuǎn)化為的零點(diǎn)問題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時(shí),,令,在是增函數(shù),時(shí),有一個(gè)零點(diǎn),當(dāng)時(shí),,令當(dāng)時(shí),,在上單調(diào)遞增,當(dāng)時(shí),,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,因?yàn)樵谏嫌?個(gè)零點(diǎn),所以當(dāng)時(shí),有2個(gè)零點(diǎn),如圖所示:所以實(shí)數(shù)的取值范圍為綜上可得實(shí)數(shù)的取值范圍為,故選:B【點(diǎn)睛】本題主要考查了函數(shù)的零點(diǎn)問題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問題的能力,屬于中檔題.4、C【解析】

作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準(zhǔn)線:,作,;,設(shè),故,,.故選:C【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5、D【解析】

如圖所示:過點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了拋物線中距離的最值問題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.6、C【解析】

根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯(cuò)誤,為偶函數(shù),故錯(cuò)誤,是奇函數(shù),故正確.為偶函數(shù),故錯(cuò)誤,故選:.【點(diǎn)睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.7、C【解析】

根據(jù)三視圖,可得該幾何體是一個(gè)三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長(zhǎng)比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個(gè)三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長(zhǎng)棱長(zhǎng)為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.8、A【解析】

首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設(shè)中點(diǎn)為,連接,,可知,,同時(shí)易知,,所以面,故即為與面所成角,有,故.故選:A.【點(diǎn)睛】本題主要考查了空間幾何題中線面夾角的計(jì)算,屬于基礎(chǔ)題.9、B【解析】

先求出集合和它的補(bǔ)集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對(duì)于集合A,,解得或,故.對(duì)于集合B,,解得.故.故選B.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查對(duì)數(shù)不等式的解法,考查集合的補(bǔ)集和交集的運(yùn)算.對(duì)于有兩個(gè)根的一元二次不等式的解法是:先將二次項(xiàng)系數(shù)化為正數(shù),且不等號(hào)的另一邊化為,然后通過因式分解,求得對(duì)應(yīng)的一元二次方程的兩個(gè)根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.10、C【解析】

根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷②;根據(jù)獨(dú)立性檢驗(yàn)的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無(wú)明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;兩個(gè)隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對(duì)值越接近于0;故②為真命題;③對(duì)分類變量與的隨機(jī)變量的觀測(cè)值來說,越小,“與有關(guān)系”的把握程度越小,故③為假命題.故選:.【點(diǎn)睛】本題以命題的真假判斷為載體考查了抽樣方法、相關(guān)系數(shù)、獨(dú)立性檢驗(yàn)等知識(shí)點(diǎn),屬于基礎(chǔ)題.11、B【解析】

先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點(diǎn)睛】本題考查函數(shù)圖象的判斷,屬于??碱}.12、C【解析】

設(shè)直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達(dá)定理可得p.【詳解】由已知得F(,0),設(shè)直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)C(x0,y0),∴y1+y2=p,又線段AB的中點(diǎn)M的縱坐標(biāo)為1,則y0(y1+y2)=,所以p=2,故選C.【點(diǎn)睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達(dá)定理是解題的關(guān)鍵,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】

已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得結(jié)果.【詳解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案為:.【點(diǎn)睛】本題考查正余弦定理在解三角形中的應(yīng)用,難度一般.14、【解析】

設(shè)桶的底面半徑為,用表示出桶的總造價(jià),利用基本不等式得出最小值.【詳解】設(shè)桶的底面半徑為,高為,則,故,圓通的造價(jià)為解法一:當(dāng)且僅當(dāng),即時(shí)取等號(hào).解法二:,則,令,即,解得,此函數(shù)在單調(diào)遞增;令,即,解得,此函數(shù)在上單調(diào)遞減;令,即,解得,即當(dāng)時(shí),圓桶的造價(jià)最低.所以故答案為:【點(diǎn)睛】本題考查了基本不等式的應(yīng)用,注意驗(yàn)證等號(hào)成立的條件,屬于基礎(chǔ)題.15、3【解析】

根據(jù)圓堡瑽(圓柱體)的體積為(底面圓的周長(zhǎng)的平方高),可得,進(jìn)而可求出的值【詳解】解:設(shè)圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點(diǎn)睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結(jié)合方程的思想即可求出結(jié)果.16、【解析】

試題分析:作出不等式組所表示的平面區(qū)域如圖,當(dāng)直線過點(diǎn)時(shí),最大,且考點(diǎn):線性規(guī)劃.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】

(1)求出函數(shù)的導(dǎo)函數(shù),依題意可得在上恒成立,參變分離得在上恒成立.設(shè),求出即可得到參數(shù)的取值范圍;(2)不妨設(shè),,,利用導(dǎo)數(shù)說明函數(shù)在上是減函數(shù),即可得證;【詳解】解:(1)∵∴,且函數(shù)在上為減函數(shù),即在上恒成立,∴在上恒成立.設(shè),∵函數(shù)在上單調(diào)遞增,∴,∴,∴實(shí)數(shù)的取值范圍為.(2)不妨設(shè),,,則,∴.∵,∴,又,令,∴,∴在上為減函數(shù),∴,∴,即,∴在上是減函數(shù),∴,即,∴,∴當(dāng)時(shí),.∵,∴.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值,利用導(dǎo)數(shù)證明不等式,考查了推理能力與計(jì)算能力,屬于難題.18、(1)見解析;(2)見解析【解析】

(1)根據(jù),分別是,的中點(diǎn),即可證明,從而可證平面;(2)先根據(jù)為正三角形,且D是的中點(diǎn),證出,再根據(jù)平面平面,得到平面,從而得到,結(jié)合,即可得證.【詳解】(1)∵,分別是,的中點(diǎn)∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點(diǎn)∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.【點(diǎn)睛】本題考查直線與平面平行的判定,面面垂直的性質(zhì)等,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng),中檔題.19、(1)(2)詳見解析(3)【解析】

試題分析:(1)當(dāng)時(shí),,由得減區(qū)間;(2)因?yàn)?,所以,因?yàn)樗?,方程有兩個(gè)不相等的實(shí)數(shù)根;(3)因?yàn)?,,所以試題解析:(1)當(dāng)時(shí),,由得減區(qū)間;(2)法1:,,,所以,方程有兩個(gè)不相等的實(shí)數(shù)根;法2:,,是開口向上的二次函數(shù),所以,方程有兩個(gè)不相等的實(shí)數(shù)根;(3)因?yàn)?,,又在和增,在減,所以.考點(diǎn):利用導(dǎo)數(shù)求函數(shù)減區(qū)間,二次函數(shù)與二次方程關(guān)系20、(1)C1:y2=1,C2:x2+(y﹣2)2=1;(2)[0,1]【解析】

(Ⅰ)消去參數(shù)φ可得C1的直角坐標(biāo)方程,易得曲線C2的圓心的直角坐標(biāo)為(0,2),可得C2的直角坐標(biāo)方程;(Ⅱ)設(shè)M(3cosφ,sinφ),由三角函數(shù)和二次函數(shù)可得|MC2|的取值范圍,結(jié)合圓的知識(shí)可得答案.【詳解】(1)消去參數(shù)φ可得C1的普通方程為y2=1,∵曲線C2是圓心為(2,),半徑為1的圓,曲線C2的圓心的直角坐標(biāo)為(0,2),∴C2的直角坐標(biāo)方程為x2+(y﹣2)2=1;(2)設(shè)M(3cosφ,sinφ),則|MC2|,∵﹣1≤sinφ≤1,∴1≤|MC2|,由題意結(jié)合圖象可得|MN|

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論