![浙江省寧波市六校聯(lián)考2024-2025學(xué)年九年級上學(xué)期10月考數(shù)學(xué)試卷_第1頁](http://file4.renrendoc.com/view9/M02/38/38/wKhkGWdQayOAXc8KAAFrvZ7KHaM843.jpg)
![浙江省寧波市六校聯(lián)考2024-2025學(xué)年九年級上學(xué)期10月考數(shù)學(xué)試卷_第2頁](http://file4.renrendoc.com/view9/M02/38/38/wKhkGWdQayOAXc8KAAFrvZ7KHaM8432.jpg)
![浙江省寧波市六校聯(lián)考2024-2025學(xué)年九年級上學(xué)期10月考數(shù)學(xué)試卷_第3頁](http://file4.renrendoc.com/view9/M02/38/38/wKhkGWdQayOAXc8KAAFrvZ7KHaM8433.jpg)
![浙江省寧波市六校聯(lián)考2024-2025學(xué)年九年級上學(xué)期10月考數(shù)學(xué)試卷_第4頁](http://file4.renrendoc.com/view9/M02/38/38/wKhkGWdQayOAXc8KAAFrvZ7KHaM8434.jpg)
![浙江省寧波市六校聯(lián)考2024-2025學(xué)年九年級上學(xué)期10月考數(shù)學(xué)試卷_第5頁](http://file4.renrendoc.com/view9/M02/38/38/wKhkGWdQayOAXc8KAAFrvZ7KHaM8435.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
九年級(上)月考數(shù)學(xué)試卷(11月份)一、選擇題:本題共10小題,每小題3分,共30分。在每小題給出的選項中,只有一項是符合題目要求的。1.如圖是一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤被等分成四個扇形,轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時,指針落在紅色區(qū)域的概率為(
)A.14
B.12
C.32.已知⊙O的半徑為8cm,點A在⊙O外,則OA的長可能為(
)A.6cm B.7cm C.8cm D.9cm3.拋物線y=ax2經(jīng)過點(-2,3),則aA.34 B.-34 C.24.一個袋中裝有2個紅球,1個白球,3個黃球,它們除顏色外都相同.從中任意摸出一個球,則下列有關(guān)可能性說法中,正確的是(
)A.紅球可能性最大 B.白球可能性最大
C.黃球可能性最大 D.三種小球的可能性相同5.函數(shù)y=2x2-1的圖象,可以由拋物線A.向左1個單位 B.向右1個單位 C.向上1個單位 D.向下1個單位6.如圖,△ABC內(nèi)接于⊙O.若AB=AC,BC度數(shù)為80°,則A.50°
B.60°
C.70°
7.若函數(shù)y=x2+2x+m的最小值為A.7 B.6 C.5 D.48.如圖,AB為⊙O的直徑,構(gòu)造四邊形OACD,且弦CD//AB,若∠D=40°A.100°
B.105°
C.110°9.若點(m,n)在拋物線y=ax2A.x<-m+2或x>m+2 B.-m+2<10.如圖在給定的⊙O中,弦AB的弦心距OH=6,CD=16,點E在弦CD上,且OE=ED=5,當(dāng)△EABA.413
B.253
C.二、填空題:本題共6小題,每小題3分,共18分。11.已知拋物線y=(k-2)x2的開口向上,寫出一個滿足條件的12.二次函數(shù)y=2(x-3)13.⊙O的半徑長為5,弦AB=6,則弦AB的弦心距為______.14.已知(1,y1),(4,y2)是拋物線y=x215.拋物線y=x2+2x+c交y軸于點(16.如圖,在半徑為5的⊙O中,弦AB=8,D為優(yōu)弧AB的中點,C為AD上點,DE⊥AC于點E,DH⊥BC于點H,連結(jié)DB.若HB=6
三、解答題:本題共8小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟。17.(本小題8分)
有一個轉(zhuǎn)盤如圖,轉(zhuǎn)盤可以自由轉(zhuǎn)動.
(1)讓轉(zhuǎn)盤自由轉(zhuǎn)動一次,求指針落在紅色區(qū)域的概率.
(2)讓轉(zhuǎn)盤自由轉(zhuǎn)動二次,求兩次指針都落在黃色區(qū)域的概率.18.(本小題8分)
如圖,AB,CD為⊙O直徑,弦DE,BF分別交半徑AO,CO于點G,H,且DE=BF.
(1)求證:∠B=∠D.
(2)若AE19.(本小題8分)
如圖,已知拋物線y=12x2+mx+n經(jīng)過點A(-6,1),B(2,1).
(1)求拋物線的表達(dá)式20.(本小題8分)
尺規(guī)作圖問題:
如圖1,弦DE交⊙O直徑AB于點F,連結(jié)AD,AD=AF,用尺規(guī)作弦DG//AB,CG//AD,C是直徑AB上一點.
小蔡:如圖2,以E為圓心,AE長為半徑作弧,交⊙O于另一點G,連結(jié)DG,以A為圓心,DG長為半徑作弧,交直徑AB于點C,連結(jié)CG,則DG//AB,CG//AD.
小通:以B為圓心,AD長為半徑作弧,交⊙O于點G,連結(jié)DG,以A為圓心,DG長為半徑作弧,交直徑AB于點C,連結(jié)CG,則DG//AB,CG//AD.
小蔡:小通,你的作法有問題21.(本小題8分)
如圖,在⊙O中,弦AD=BC,OE⊥AB于E,OH⊥BC于H.
(1)求證:AB=CD.
(2)若⊙O22.(本小題10分)
如圖,在矩形ABCD中,AB=3,BC=4,點E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,且DG=BE,AH=CF=2BE,記四邊形EFGH的面積為y,邊長BE為x.
(1)求y關(guān)于x的表達(dá)式及自變量x的取值范圍23.(本小題10分)
如圖,在⊙O中,弦AB//CD,點E在AD上,延長ED至點F,使EF=EB,延長AE至點G,連結(jié)GF,使∠F=∠EAC,GF=AD.
(1)連結(jié)CB,求證:GF=CB;
(2)若∠F=24.(本小題12分)
如圖,拋物線y=-x2+bx+c經(jīng)過點A(0,2),對稱軸為直線x=1,點G坐標(biāo)為(1,0),點C在邊AG上運(yùn)動,延長OC交拋物線于點B,連結(jié)BG,分別記△OBG,△OCG的面積為S1,S2.
(1)求該拋物線表達(dá)式.
(2)若點P(x1,y1),Q(x1+1,y2)
答案和解析1.【答案】A
【解析】解:∵由題中給出的信息分析可得:圓被等分成4份,其中紅色部分占1份,
∴落在紅色區(qū)域的概率=14.
故選:A.2.【答案】D
【解析】解:∵⊙O的半徑為8cm,點A在⊙O外,
∴OA>8cm,
故選:D.
先得到圓的半徑為8cm,根據(jù)點與圓的位置關(guān)系的判定方法得到當(dāng)d>8cm時,點P在⊙O外;當(dāng)d=8cm時,點P3.【答案】A
【解析】解:由條件可知:4a=3,
解得a=34,
故選:A.
將點(-2,3)代入4.【答案】C
【解析】解:∵不透明的盒子中裝有2個紅球,1個白球和3個黃球,
∴球的個數(shù)=2+1+3=6,
∴摸到紅球的可能性是26=13,
摸到白球的可能性是16,
摸到黃球的可能性是36=12,
∵125.【答案】D
【解析】解:由拋物線解析式可知:平移后的拋物線y=2x2-1的頂點坐標(biāo)為(0,-1),
∴函數(shù)y=2x2-1的圖象,可以由拋物線y=2x2向下6.【答案】C
【解析】解:△ABC內(nèi)接于⊙O,BC所對圓周角是∠BAC,且BC度數(shù)為80°,
∴∠BAC=12×80°=40°,
∵AB=7.【答案】B
【解析】解:將拋物線配方得:y=(x+1)2+m-1,
∴函數(shù)y=x2+2x+m有最小值為8.【答案】C
【解析】解:連接BD,如圖所示:
∵∠CDO=40°,CD//AB,
∴∠CDO=∠DOB=40°,
∵OD=OB,
∴∠ODB=∠OBD=12(180°-∠BOD)=70°,
∵四邊形9.【答案】A
【解析】解:∵點(m,n)在拋物線y=ax2(a>0)上,
∴n=am2,
∴a(x-2)2>am2,
∵a>0,
∴(10.【答案】B
【解析】解:過點E作EN⊥AB于點N,如圖,
∵OE=5,
∴點E軌跡為以點O為圓心,5為半徑的圓,
∵EO+OH≥EN,OH⊥AB,
∴如圖:當(dāng)點E,O,H三點共線時,EN最大,則△EAB面積最大,
過點O作OG⊥CD于點G,過點D作HO延長線的垂線,垂足為點M,
∴DG=12CD=8,
∴GE=GD-ED=3,
∴OG=52-32=4,
∵DM⊥EM,OG⊥CD,
∴∠M=∠OGE=90°,
∵EO=ED,∠MED=∠GEO,
∴△MED≌△GEO,
∴MD=OG=4,ME=GE=3,
∴MH=ME+OE+OH=3+5+6=14,
∴在Rt△DMH中,由勾股定理得:DH=DM2+M11.【答案】3(答案不唯一)
【解析】解:因為拋物線y=(k-2)x2的開口向上,
所以k-2>0,即k>2,
所以k的值可以是3(答案不唯一).
12.【答案】直線x=3【解析】解:∵y=2(x-3)2+5是拋物線的頂點式,
根據(jù)頂點式的坐標(biāo)特點可知,
對稱軸為直線x=3.
故答案為:直線x13.【答案】4
【解析】解:如圖,點O作OD⊥AB于點D,
∵AB=6,
∴AD=12AB=12×6=3,
∵圓的半徑是5,
∴OD=OA214.【答案】y1【解析】解:∵(1,y1),(4,y2)在拋物線y=x2-6x圖象上,
∴y1=1-6=-5,y2=-8,
∴y15.【答案】-5【解析】解:∵拋物線交y軸于點(m+5,m),
∴m+5=0,
解得,m=-5,
∴c=-5,
故答案為:-5.
根據(jù)拋物線與16.【答案】6【解析】解:過點D作DG⊥AB于點G,連接AD,OB,CD,
∵AD=BD,
∴△ABD是等腰三角形,
∵DG⊥AB,AB=8,
∴AG=BG=12AB=4,
∵⊙O是△ABD的外接圓,⊙O的半徑為5,
∴OB=OD=5,
∴OG=OB2-BG2=3,
∴DG=OG+OD=8,
∴BD=AD=BG2+DG2=45,
∵DH⊥BC于點H,HB=6,
∴∠BHD=90°,
∴DH=BD2-BH2=211,
∵CD=CD,
∴∠17.【答案】(1)解:如圖,
所以,指針落在紅色區(qū)域的概率為13.
(2)如圖:
∵共有9種等可能的結(jié)果,兩次指針都落在黃色區(qū)域的只有4種情況,
∴兩次指針都落在黃色區(qū)域的概率為:49;【解析】(1)將黃色區(qū)域平分成兩部分,再運(yùn)用概率公式求解即可;
(2)根據(jù)題意畫樹狀圖,由樹狀圖求得所有等可能的結(jié)果與兩次指針都落在黃色區(qū)域的情況,再利用概率公式即可求得答案.
本題考查了列表法或樹狀圖法求概率,正確記憶概率=所求情況數(shù)與總情況數(shù)之比是解題關(guān)鍵.18.【答案】(1)證明:∵BF=DE,
∴BF=DE.
∵AB,CD為⊙O直徑,
∴BFA=DEC,
∴DEC-DE=BFA-BF,
即EC=AF.
【解析】(1)證明EC=AF即可得出結(jié)論;
(2)求出EC=80°,AE=EF19.【答案】解:(1)把A(-6,1),B(2,1)代入二次函數(shù)解析式得,
12×(-6)2-6m+n=112×22+2m+n=1,
解得,m=2n=-5,
∴拋物線的表達(dá)式為y=12x2+2x-5;
【解析】(1)利用待定系數(shù)法求二次函數(shù)的表達(dá)式;
(2)利用配方法得到y(tǒng)=12(x+2)2-7,根據(jù)二次函數(shù)的性質(zhì)得到拋物線的對稱軸為直線x=-2,當(dāng)x=-1時,20.【答案】(1)證明:∵AF=AD,
∴∠AFD=∠ADF.
∵EG=AE,
∴∠FDG=∠ADF.
∴∠FDG=∠AFD,
∴【解析】(1)利用等腰三角形性質(zhì)得到∠ADF=∠AFD,根據(jù)圓周角定理得到∠ADF=∠FDG,再結(jié)合等量代換和平行線判定得到DG//AB,最后根據(jù)平行四邊形的判定和性質(zhì),即可推出CG//AD;
(2)根據(jù)“以B為圓心,AD長為半徑作弧,”作圖可知點21.【答案】(1)證明:∵AD=BC,
∴AD=BC,AD+BD=BC+BD,
即AB=CD,
∴AB=CD.
【解析】(1)由題意易得AB=CD,進(jìn)而問題可求證;
(2)連接OB,由勾股定理,得OE=3.22.【答案】解:(1)∵四邊形ABCD是矩形,
∴AB=CD=3,AD=BC=4,∠A=∠B=∠C=∠D=90°,
∵邊長BE為x,
∴DG=BE=x,AH=CF=2BE=2x,
∴AE=CG=3-x,DH=BF【解析】(1)利用四邊形的面積等于矩形的面積減去四個直角三角形的面積,得到y(tǒng)與x的函數(shù)關(guān)系;
(2)通過對函數(shù)配方,結(jié)合自變量取值范圍取得最值.
本題主要考查的是二次函數(shù)的應(yīng)用,利用四邊形的面積等于矩形的面積減去四個直角三角形的面積得到函數(shù)的關(guān)系式是解題的關(guān)鍵.23.【答案】(1)證明:∵弦AB//CD,
∴AD=BC,∠DCA=∠BAC,
∴AD=BC,
∵GF=AD,
∴GF=CB.
(2)解:如圖,連接BC,
∵CA為⊙O直徑,
∴∠CBA=90°.
∵∠EAC=∠F=70°,
∴∠CBE=∠EAC=70°,
∴∠ABE=∠CBA-∠【解析】(1)根據(jù)弦AB//CD可得∠DCA=∠BAC,AD=BC,由弧、弦的關(guān)系可得結(jié)論;
(2)由CA為⊙O直徑得?angCBA=90°,再根據(jù)圓周角定理可得結(jié)論;
(3)連結(jié)24.【答案】解:(1)拋物線y=-x2+bx+c經(jīng)過點A(0,2),對稱軸為直線x=1,
∴x=-b2×(-1)=1,
解得b=2.
把點A的坐標(biāo)代入y=-x2+2x+c得:c=2.
∴拋物線表達(dá)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水泥沙子采購合同
- 授權(quán)經(jīng)銷合同協(xié)議
- 農(nóng)業(yè)科技園區(qū)綜合開發(fā)合同
- 短期租賃服務(wù)意外免責(zé)協(xié)議
- 網(wǎng)絡(luò)信息技術(shù)支持協(xié)議
- 商場裝修合同與商場裝修合同
- 打井承包合同
- 手房轉(zhuǎn)讓買賣協(xié)議
- 新版不定期勞動合同書(33篇)
- 瓦工貼磚施工合同
- 城市綠化與生態(tài)環(huán)境改善
- 2024-2025學(xué)年中小學(xué)校第二學(xué)期師德師風(fēng)工作計劃:必看!新學(xué)期師德師風(fēng)建設(shè)秘籍大公開(附2月-7月工作安排表)
- 《急性心力衰竭的急救處理》課件
- 2025年高壓電工作業(yè)考試國家總局題庫及答案(共280題)
- 2024年中國養(yǎng)老產(chǎn)業(yè)商學(xué)研究報告-銀發(fā)經(jīng)濟(jì)專題
- 印刷公司生產(chǎn)部2025年年度工作總結(jié)及2025年工作計劃
- 2025年中考語文一輪復(fù)習(xí):八年級下冊知識點梳理
- 小班孵雞蛋課程設(shè)計
- 糖尿病的麻醉管理
- 高教版2023年中職教科書《語文》(基礎(chǔ)模塊)下冊教案全冊
- word上機(jī)操作題
評論
0/150
提交評論