版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
內(nèi)蒙古自治區(qū)烏蘭察布市集寧一中2025屆高三3月份第一次模擬考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),,當(dāng)周長(zhǎng)最小時(shí),所在直線的斜率為()A. B. C. D.2.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1283.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.4.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關(guān)系(用不等號(hào)連接)為()A. B.C. D.5.秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入的值為2,則輸出的值為A. B. C. D.6.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),,則,,的大小關(guān)系為()A. B. C. D.7.已知函數(shù)f(x)=,若關(guān)于x的方程f(x)=kx-恰有4個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是()A. B.C. D.8.已知實(shí)數(shù)、滿足不等式組,則的最大值為()A. B. C. D.9.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.10.下列說(shuō)法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題11.在正方體中,點(diǎn)、分別為、的中點(diǎn),過(guò)點(diǎn)作平面使平面,平面若直線平面,則的值為()A. B. C. D.12.中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的最大值與最小正周期相同,則在上的單調(diào)遞增區(qū)間為_(kāi)_____.14.設(shè)是公差不為0的等差數(shù)列的前項(xiàng)和,且,則______.15.已知實(shí)數(shù),滿足則的取值范圍是______.16.設(shè)、、、、是表面積為的球的球面上五點(diǎn),四邊形為正方形,則四棱錐體積的最大值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知矩形中,,E,F(xiàn)分別為,的中點(diǎn).沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段,的中點(diǎn),連接.(1)求證:平面;(2)求二面角的余弦值.18.(12分)如圖,在四棱錐中,底面為等腰梯形,,為等腰直角三角形,,平面底面,為的中點(diǎn).(1)求證:平面;(2)若平面與平面的交線為,求二面角的正弦值.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.20.(12分)已知等腰梯形中(如圖1),,,為線段的中點(diǎn),、為線段上的點(diǎn),,現(xiàn)將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.21.(12分)已知離心率為的橢圓經(jīng)過(guò)點(diǎn).(1)求橢圓的方程;(2)薦橢圓的右焦點(diǎn)為,過(guò)點(diǎn)的直線與橢圓分別交于,若直線、、的斜率成等差數(shù)列,請(qǐng)問(wèn)的面積是否為定值?若是,求出此定值;若不是,請(qǐng)說(shuō)明理由.22.(10分)已知等差數(shù)列的前n項(xiàng)和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項(xiàng)公式;(2)已知,求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
本道題繪圖發(fā)現(xiàn)三角形周長(zhǎng)最小時(shí)A,P位于同一水平線上,計(jì)算點(diǎn)P的坐標(biāo),計(jì)算斜率,即可.【詳解】結(jié)合題意,繪制圖像要計(jì)算三角形PAF周長(zhǎng)最小值,即計(jì)算PA+PF最小值,結(jié)合拋物線性質(zhì)可知,PF=PN,所以,故當(dāng)點(diǎn)P運(yùn)動(dòng)到M點(diǎn)處,三角形周長(zhǎng)最小,故此時(shí)M的坐標(biāo)為,所以斜率為,故選A.【點(diǎn)睛】本道題考查了拋物線的基本性質(zhì),難度中等.2、C【解析】
根據(jù)給定的程序框圖,逐次計(jì)算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,結(jié)合判斷條件求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、A【解析】
將已知條件轉(zhuǎn)化為的形式,由此確定數(shù)列為的項(xiàng).【詳解】由于等差數(shù)列中,所以,化簡(jiǎn)得,所以為.故選:A【點(diǎn)睛】本小題主要考查等差數(shù)列的基本量計(jì)算,屬于基礎(chǔ)題.4、A【解析】因?yàn)椋?,即周期為4,因?yàn)闉槠婧瘮?shù),所以可作一個(gè)周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因?yàn)?,因此,選A.點(diǎn)睛:函數(shù)對(duì)稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關(guān)于原點(diǎn)對(duì)稱);(2)函數(shù)關(guān)于點(diǎn)對(duì)稱,函數(shù)關(guān)于直線對(duì)稱,(3)函數(shù)周期為T,則5、C【解析】
由題意,模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的,的值,當(dāng)時(shí),不滿足條件,跳出循環(huán),輸出的值.【詳解】解:初始值,,程序運(yùn)行過(guò)程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環(huán),輸出的值為其中①②①—②得.故選:.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到,的值是解題的關(guān)鍵,屬于基礎(chǔ)題.6、C【解析】
根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項(xiàng).【詳解】依題意得,,當(dāng)時(shí),,因?yàn)?,所以在上單調(diào)遞增,又在上單調(diào)遞增,所以在上單調(diào)遞增,,即,故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對(duì)的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題.7、D【解析】
由已知可將問(wèn)題轉(zhuǎn)化為:y=f(x)的圖象和直線y=kx-有4個(gè)交點(diǎn),作出圖象,由圖可得:點(diǎn)(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時(shí),k=;結(jié)合圖象即可得解.【詳解】若關(guān)于x的方程f(x)=kx-恰有4個(gè)不相等的實(shí)數(shù)根,則y=f(x)的圖象和直線y=kx-有4個(gè)交點(diǎn).作出函數(shù)y=f(x)的圖象,如圖,故點(diǎn)(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當(dāng)直線y=kx-和y=lnx相切時(shí),設(shè)切點(diǎn)橫坐標(biāo)為m,則k==,∴m=.此時(shí),k==,f(x)的圖象和直線y=kx-有3個(gè)交點(diǎn),不滿足條件,故所求k的取值范圍是,故選D..【點(diǎn)睛】本題主要考查了函數(shù)與方程思想及轉(zhuǎn)化能力,還考查了導(dǎo)數(shù)的幾何意義及計(jì)算能力、觀察能力,屬于難題.8、A【解析】
畫出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標(biāo)函數(shù),化為直線,當(dāng)直線過(guò)點(diǎn)A時(shí),此時(shí)直線在y軸上的截距最大,目標(biāo)函數(shù)取得最大值,又由,解得,所以目標(biāo)函數(shù)的最大值為,故選A.【點(diǎn)睛】本題主要考查簡(jiǎn)單線性規(guī)劃求解目標(biāo)函數(shù)的最值問(wèn)題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計(jì)算能力,屬于基礎(chǔ)題.9、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.10、D【解析】選項(xiàng)A,否命題為“若,則”,故A不正確.選項(xiàng)B,逆命題為“若,則”,為假命題,故B不正確.選項(xiàng)C,由題意知對(duì),都有,故C不正確.選項(xiàng)D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.11、B【解析】
作出圖形,設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),推導(dǎo)出,由線面平行的性質(zhì)定理可得出,可得出點(diǎn)為的中點(diǎn),同理可得出點(diǎn)為的中點(diǎn),結(jié)合中位線的性質(zhì)可求得的值.【詳解】如下圖所示:設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),四邊形為正方形,、分別為、的中點(diǎn),則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時(shí),平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點(diǎn),同理可證為的中點(diǎn),,,因此,.故選:B.【點(diǎn)睛】本題考查線段長(zhǎng)度比值的計(jì)算,涉及線面平行性質(zhì)的應(yīng)用,解答的關(guān)鍵就是找出平面與正方體各棱的交點(diǎn)位置,考查推理能力與計(jì)算能力,屬于中等題.12、A【解析】
根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點(diǎn)在x、y軸上兩種情況討論,進(jìn)而求得雙曲線的離心率.【詳解】設(shè)雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點(diǎn)在x、y軸上兩種情況討論:
①當(dāng)焦點(diǎn)在x軸上時(shí)有:②當(dāng)焦點(diǎn)在y軸上時(shí)有:∴求得雙曲線的離心率2或.
故選:A.【點(diǎn)睛】本小題主要考查直線與圓的位置關(guān)系、雙曲線的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關(guān)系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯(cuò)誤答案.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用三角函數(shù)的輔助角公式進(jìn)行化簡(jiǎn),求出函數(shù)的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】∵,則函數(shù)的最大值為2,周期,的最大值與最小正周期相同,,得,則,當(dāng)時(shí),,則當(dāng)時(shí),得,即函數(shù)在,上的單調(diào)遞增區(qū)間為,故答案為:.【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì)、單調(diào)區(qū)間,利用輔助角公式求出函數(shù)的解析式是解決本題的關(guān)鍵,同時(shí)要注意單調(diào)區(qū)間為定義域的一個(gè)子區(qū)間.14、18【解析】
先由,可得,再結(jié)合等差數(shù)列的前項(xiàng)和公式求解即可.【詳解】解:因?yàn)?,所以?故答案為:18.【點(diǎn)睛】本題考查了等差數(shù)列基本量的運(yùn)算,重點(diǎn)考查了等差數(shù)列的前項(xiàng)和公式,屬基礎(chǔ)題.15、【解析】
根據(jù)約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個(gè)位置為的臨界位置,根據(jù)幾何關(guān)系可得與軸的兩個(gè)交點(diǎn)分別為,所以的取值范圍為.故答案為:【點(diǎn)睛】本題考查了非線性約束條件下線性規(guī)劃的簡(jiǎn)單應(yīng)用,由數(shù)形結(jié)合法求線性目標(biāo)函數(shù)的取值范圍,屬于中檔題.16、【解析】
根據(jù)球的表面積求得球的半徑,設(shè)球心到四棱錐底面的距離為,求得四棱錐的表達(dá)式,利用基本不等式求得體積的最大值.【詳解】由已知可得球的半徑,設(shè)球心到四棱錐底面的距離為,棱錐的高為,底面邊長(zhǎng)為,的體積,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故答案為:【點(diǎn)睛】本小題主要考查球的表面積有關(guān)計(jì)算,考查球的內(nèi)接四棱錐體積的最值的求法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】
(1)取中點(diǎn)R,連接,,可知中,且,由Q是中點(diǎn),可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標(biāo)系,求得半平面的法向量:,然后利用空間向量的相關(guān)結(jié)論可求得二面角的余弦值.【詳解】(1)取中點(diǎn)R,連接,,則在中,,且,又Q是中點(diǎn),所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內(nèi)作交于點(diǎn)G,以E為原點(diǎn),,,分別為x,y,x軸,建立如圖所示的空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為,,,所以,,設(shè)平面的一個(gè)法向量為,則即,取,得,又平面的一個(gè)法向量為,所以.因此,二面角的余弦值為【點(diǎn)睛】本題考查線面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運(yùn)算求解能力,難度一般.18、(1)證明見(jiàn)解析;(2)【解析】
(1)取的中點(diǎn),連接,易得,進(jìn)而可證明四邊形為平行四邊形,即,從而可證明平面;(2)取中點(diǎn),中點(diǎn),連接,易證平面,平面,從而可知兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),向量的方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系,進(jìn)而求出平面的法向量,及平面的法向量為,由,可求得平面與平面所成的二面角的正弦值.【詳解】(1)證明:如圖1,取的中點(diǎn),連接.,,,,且,四邊形為平行四邊形,.又平面,平面,平面.(2)如圖2,取中點(diǎn),中點(diǎn),連接.,,平面平面,平面平面,平面,平面,兩兩垂直.以點(diǎn)為坐標(biāo)原點(diǎn),向量的方向分別為軸正方向建立如圖所示空間直角坐標(biāo)系.由,可得,在等腰梯形中,,易知,.則,,設(shè)平面的法向量為,則,取,得.設(shè)平面的法向量為,則,取,得.因?yàn)?,,,所以,所以平面與平面所成的二面角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查二面角的求法,利用空間向量法是解決本題的較好方法,屬于中檔題.19、(1)或;(2).【解析】
(1)利用絕對(duì)值的幾何意義,將不等式,轉(zhuǎn)化為不等式或或求解.(2)根據(jù)-2在R上恒成立,由絕對(duì)值三角不等式求得的最小值即可.【詳解】(1)原不等式等價(jià)于或或,解得:或,∴不等式的解集為或.(2)因?yàn)?2在R上恒成立,而,所以,解得,所以實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查絕對(duì)值不等式的解法和不等式恒成立問(wèn)題,還考查了運(yùn)算求解的能力,屬于中檔題.20、(1)見(jiàn)解析;(2).【解析】
(1)先連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)在圖2中,過(guò)點(diǎn)作,垂足為,連接,,證明平面平面,得到點(diǎn)在底面上的投影必落在直線上,記為點(diǎn)在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數(shù)據(jù)求解,即可得出結(jié)果.【詳解】(1)連接,因?yàn)榈妊菪沃校ㄈ鐖D1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點(diǎn),為中點(diǎn),易得:四邊形也為平行四邊形,所以;將四邊形沿折起后,平行關(guān)系沒(méi)有變化,仍有:,且,所以翻折后四邊形也為平行四邊形;故;因?yàn)槠矫妫矫?,所以平面;?)在圖2中,過(guò)點(diǎn)作,垂足為,連接,,因?yàn)?,,翻折前梯形的高為,所以,則,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以點(diǎn)在底面上的投影必落在直線上;記為點(diǎn)在底面上的投影,連接,,則平面;所以即是直線與平
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國(guó)泳裝、泳褲行業(yè)市場(chǎng)發(fā)展監(jiān)測(cè)及投資方向研究報(bào)告
- 2019-2025年中國(guó)環(huán)球影城主題公園行業(yè)競(jìng)爭(zhēng)格局分析及投資戰(zhàn)略咨詢報(bào)告
- 成立雜志社可行性研究報(bào)告
- 2025年聚合物粘結(jié)砂漿項(xiàng)目可行性研究報(bào)告
- 2019-2025年中國(guó)醫(yī)用X射線機(jī)行業(yè)市場(chǎng)深度分析及發(fā)展前景預(yù)測(cè)報(bào)告
- 中國(guó)阿奇霉素行業(yè)發(fā)展前景預(yù)測(cè)及投資策略研究報(bào)告
- 2025年廢鐵項(xiàng)目投資分析及可行性報(bào)告
- 2022-2027年中國(guó)支線航空行業(yè)市場(chǎng)調(diào)研及未來(lái)發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 印花扁平絨面料行業(yè)市場(chǎng)發(fā)展及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2024-2026年中國(guó)有線電視調(diào)制解調(diào)器市場(chǎng)競(jìng)爭(zhēng)格局及投資戰(zhàn)略規(guī)劃報(bào)告
- 污水處理運(yùn)行質(zhì)量保證措施
- 食材供貨及質(zhì)量保障措施方案
- 基于單片機(jī)的智能充電器設(shè)計(jì)
- 關(guān)于新中國(guó)史簡(jiǎn)介 新中國(guó)史簡(jiǎn)介 最好
- 營(yíng)養(yǎng)學(xué)概論演示
- 統(tǒng)編版語(yǔ)文四年級(jí)上冊(cè)期末總復(fù)習(xí)課件
- 2023年四川省鄉(xiāng)村醫(yī)生招聘筆試題庫(kù)及答案解析
- 彈力重力和摩擦力
- 配料罐(攪拌罐)說(shuō)明書
- 【超星爾雅學(xué)習(xí)通】《中國(guó)近現(xiàn)代史綱要(首都師范大學(xué))》章節(jié)測(cè)試題及答案(一)
- 國(guó)有企業(yè)副經(jīng)理競(jìng)聘面試問(wèn)題及參考答案
評(píng)論
0/150
提交評(píng)論