遼寧省遼河油田第二中學2025屆高考考前提分數(shù)學仿真卷含解析_第1頁
遼寧省遼河油田第二中學2025屆高考考前提分數(shù)學仿真卷含解析_第2頁
遼寧省遼河油田第二中學2025屆高考考前提分數(shù)學仿真卷含解析_第3頁
遼寧省遼河油田第二中學2025屆高考考前提分數(shù)學仿真卷含解析_第4頁
遼寧省遼河油田第二中學2025屆高考考前提分數(shù)學仿真卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省遼河油田第二中學2025屆高考考前提分數(shù)學仿真卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖象與直線的相鄰交點間的距離為,若定義,則函數(shù),在區(qū)間內的圖象是()A. B.C. D.2.已知函數(shù),不等式對恒成立,則的取值范圍為()A. B. C. D.3.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.4.若不相等的非零實數(shù),,成等差數(shù)列,且,,成等比數(shù)列,則()A. B. C.2 D.5.過圓外一點引圓的兩條切線,則經過兩切點的直線方程是().A. B. C. D.6.已知六棱錐各頂點都在同一個球(記為球)的球面上,且底面為正六邊形,頂點在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.7.已知正方體的棱長為2,點在線段上,且,平面經過點,則正方體被平面截得的截面面積為()A. B. C. D.8.復數(shù)在復平面內對應的點為則()A. B. C. D.9.已知函數(shù),若關于的方程恰好有3個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.10.已知集合A={x|x<1},B={x|},則A. B.C. D.11.在三棱錐中,,,P在底面ABC內的射影D位于直線AC上,且,.設三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.12.在正方體中,E是棱的中點,F(xiàn)是側面內的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值二、填空題:本題共4小題,每小題5分,共20分。13.平面向量,,(R),且與的夾角等于與的夾角,則.14.各項均為正數(shù)的等比數(shù)列中,為其前項和,若,且,則公比的值為_____.15.若函數(shù)的圖像上存在點,滿足約束條件,則實數(shù)的最大值為__________.16.在中,內角的對邊分別是,若,,則____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).(1)求實數(shù)的值;(2)用表示中的最小值,設函數(shù),若函數(shù)為增函數(shù),求實數(shù)的取值范圍.18.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設二面角的大小為,求的值.19.(12分)設橢圓的右焦點為,過的直線與交于兩點,點的坐標為.(1)當直線的傾斜角為時,求線段AB的中點的橫坐標;(2)設點A關于軸的對稱點為C,求證:M,B,C三點共線;(3)設過點M的直線交橢圓于兩點,若橢圓上存在點P,使得(其中O為坐標原點),求實數(shù)的取值范圍.20.(12分)已知數(shù)列滿足,,數(shù)列滿足.(Ⅰ)求證數(shù)列是等比數(shù)列;(Ⅱ)求數(shù)列的前項和.21.(12分)已知.(1)若曲線在點處的切線也與曲線相切,求實數(shù)的值;(2)試討論函數(shù)零點的個數(shù).22.(10分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由題知,利用求出,再根據題給定義,化簡求出的解析式,結合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【點睛】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關鍵是對新定義的理解.2、C【解析】

確定函數(shù)為奇函數(shù),且單調遞減,不等式轉化為,利用雙勾函數(shù)單調性求最值得到答案.【詳解】是奇函數(shù),,易知均為減函數(shù),故且在上單調遞減,不等式,即,結合函數(shù)的單調性可得,即,設,,故單調遞減,故,當,即時取最大值,所以.故選:.【點睛】本題考查了根據函數(shù)單調性和奇偶性解不等式,參數(shù)分離求最值是解題的關鍵.3、D【解析】

試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.4、A【解析】

由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數(shù)列,所以,又,,成等比數(shù)列,所以,消去得,所以,解得或,因為,,是不相等的非零實數(shù),所以,此時,所以.故選:A【點睛】本題考查了等差等比數(shù)列的綜合應用,考查了學生概念理解,轉化劃歸,數(shù)學運算的能力,屬于中檔題.5、A【解析】過圓外一點,引圓的兩條切線,則經過兩切點的直線方程為,故選.6、D【解析】

由題意,得出六棱錐為正六棱錐,求得,再結合球的性質,求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因為,所以,設外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點睛】本題主要考查了正棱錐的幾何結構特征,以及外接球的表面積的計算,其中解答中熟記幾何體的結構特征,熟練應用球的性質求得球的半徑是解答的關鍵,著重考查了空間想象能力,以及推理與計算能力,屬于中檔試題.7、B【解析】

先根據平面的基本性質確定平面,然后利用面面平行的性質定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個平面,因為平面平面,所以,同理,所以四邊形是平行四邊形.即正方體被平面截的截面.因為,所以,即所以由余弦定理得:所以所以四邊形故選:B【點睛】本題主要考查平面的基本性質,面面平行的性質定理及截面面積的求法,還考查了空間想象和運算求解的能力,屬于中檔題.8、B【解析】

求得復數(shù),結合復數(shù)除法運算,求得的值.【詳解】易知,則.故選:B【點睛】本小題主要考查復數(shù)及其坐標的對應,考查復數(shù)的除法運算,屬于基礎題.9、D【解析】

討論,,三種情況,求導得到單調區(qū)間,畫出函數(shù)圖像,根據圖像得到答案.【詳解】當時,,故,函數(shù)在上單調遞增,在上單調遞減,且;當時,;當時,,,函數(shù)單調遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點睛】本題考查了利用導數(shù)求函數(shù)的零點問題,意在考查學生的計算能力和應用能力.10、A【解析】∵集合∴∵集合∴,故選A11、A【解析】

設的中點為O先求出外接圓的半徑,設,利用平面ABC,得,在及中利用勾股定理構造方程求得球的半徑即可【詳解】設的中點為O,因為,所以外接圓的圓心M在BO上.設此圓的半徑為r.因為,所以,解得.因為,所以.設,易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題12、C【解析】

分別根據線面平行的性質定理以及異面直線的定義,體積公式分別進行判斷.【詳解】對于,設平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、、,,平面,平面,平面.同理可得平面,、是平面內的相交直線平面平面,由此結合平面,可得直線平面,即點是線段上上的動點.正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯誤.對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點睛】本題考查了正方形的性質、空間位置關系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】試題分析:,與的夾角等于與的夾角,所以考點:向量的坐標運算與向量夾角14、【解析】

將已知由前n項和定義整理為,再由等比數(shù)列性質求得公比,最后由數(shù)列各項均為正數(shù),舍根得解.【詳解】因為即又等比數(shù)列各項均為正數(shù),故故答案為:【點睛】本題考查在等比數(shù)列中由前n項和關系求公比,屬于基礎題.15、1【解析】由題知x>0,且滿足約束條件的圖象為由圖可知當與交于點B(2,1),當直線過B點時,m取得最大值為1.點睛:線性規(guī)劃的實質是把代數(shù)問題幾何化,即數(shù)形結合的思想.需要注意的是:一、準確無誤地作出可行域;二、畫標準函數(shù)所對應的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三、一般情況下,目標函數(shù)的最大或最小會在可行域的端點或邊界上取得.16、【解析】

由,根據正弦定理“邊化角”,可得,根據余弦定理,結合已知聯(lián)立方程組,即可求得角.【詳解】根據正弦定理:可得根據余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.【點睛】本題主要考查了求三角形的一個內角,解題關鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

試題分析:(1)先求導,然后利用導數(shù)等于求出切點的橫坐標,代入兩個曲線的方程,解方程組,可求得;(2)設與交點的橫坐標為,利用導數(shù)求得,從而,然后利用求得的取值范圍為.試題解析:(1)對求導得.設直線與曲線切于點,則,解得,所以的值為1.(2)記函數(shù),下面考察函數(shù)的符號,對函數(shù)求導得.當時,恒成立.當時,,從而.∴在上恒成立,故在上單調遞減.,∴,又曲線在上連續(xù)不間斷,所以由函數(shù)的零點存在性定理及其單調性知唯一的,使.∴;,,∴,從而,∴,由函數(shù)為增函數(shù),且曲線在上連續(xù)不斷知在,上恒成立.①當時,在上恒成立,即在上恒成立,記,則,當變化時,變化情況列表如下:

3

0

極小值

∴,故“在上恒成立”只需,即.②當時,,當時,在上恒成立,綜合①②知,當時,函數(shù)為增函數(shù).故實數(shù)的取值范圍是考點:函數(shù)導數(shù)與不等式.【方法點晴】函數(shù)導數(shù)問題中,和切線有關的題目非常多,我們只要把握住關鍵點:一個是切點,一個是斜率,切點即在原來函數(shù)圖象上,也在切線上;斜率就是導數(shù)的值.根據這兩點,列方程組,就能解決.本題第二問我們采用分層推進的策略,先求得的表達式,然后再求得的表達式,我們就可以利用導數(shù)這個工具來求的取值范圍了.18、(1)證明見解析;(2).【解析】

(1)要證明平面平面,只需證明平面即可;(2)取的中點D,連接BD,以B為原點,以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,分別計算平面的法向量為與平面的法向量為,利用夾角公式計算即可.【詳解】(1)在中,,所以,即.因為,,,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由題意知,四邊形為菱形,且,則為正三角形,取的中點D,連接BD,則.以B為原點,以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,則,,,,.設平面的法向量為,且,.由得取.由四邊形為菱形,得;又平面,所以;又,所以平面,所以平面的法向量為.所以.故.【點睛】本題考查面面垂直的判定定理以及利用向量法求二面角正弦值的問題,在利用向量法時,關鍵是點的坐標要寫準確,本題是一道中檔題.19、(1)AB的中點的橫坐標為;(2)證明見解析;(3)【解析】

設.(1)因為直線的傾斜角為,,所以直線AB的方程為,聯(lián)立方程組,消去并整理,得,則,故線段AB的中點的橫坐標為.(2)根據題意得點,若直線AB的斜率為0,則直線AB的方程為,A、C兩點重合,顯然M,B,C三點共線;若直線AB的斜率不為0,設直線AB的方程為,聯(lián)立方程組,消去并整理得,則,設直線BM、CM的斜率分別為、,則,即=,即M,B,C三點共線.(3)根據題意,得直線GH的斜率存在,設該直線的方程為,設,聯(lián)立方程組,消去并整理,得,由,整理得,又,所以,結合,得,當時,該直線為軸,即,此時橢圓上任意一點P都滿足,此時符合題意;當時,由,得,代入橢圓C的方程,得,整理,得,再結合,得到,即,綜上,得到實數(shù)的取值范圍是.20、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)利用等比數(shù)列的定義結合得出數(shù)列是等比數(shù)列(Ⅱ)數(shù)列是“等比-等差”的類型,利用分組求和即可得出前項和.【詳解】解:(Ⅰ)當時,,故.當時,,則,,數(shù)列是首項為,公比為的等比數(shù)列.(Ⅱ)由(Ⅰ)得,,,.【點睛】(Ⅰ)證明數(shù)列是等比數(shù)列可利用定義法得出(Ⅱ)采用分組求和:把一個數(shù)列分成幾個可以直接求和的數(shù)列.21、(1)(2)答案不唯一具體見解析【解析】

(1)利用導數(shù)的幾何意義,設切點的坐標,用不同的方式求出兩種切線方程,但兩條切線本質為同一條,從而得到方程組,再構造函數(shù)研究其最大值,進而求得;(2)對函數(shù)進行求導后得,對分三種情況進行一級討論,即,,,結合函數(shù)圖象的單調性及零點存在定理,可得函數(shù)零點情況.【詳解】解:(1)曲線在點處的切線方程為,即.令切線與曲線相切于點,則切線方程為,∴,∴,令,則,記,于是,在上單調遞增,在上單調遞減,∴,于是,.(2),①當時,恒成立,在上單調遞增,且,∴函數(shù)在上有且僅有一個零點;②當時,在R上沒有零點;③當時,令,則,即函數(shù)的增區(qū)間是,同理,減區(qū)間是,∴.?。┤?,則,在上沒有零點;ⅱ)若,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論