數(shù)學(xué)中考?jí)狠S題大全含答案、詳細(xì)解析版_第1頁(yè)
數(shù)學(xué)中考?jí)狠S題大全含答案、詳細(xì)解析版_第2頁(yè)
數(shù)學(xué)中考?jí)狠S題大全含答案、詳細(xì)解析版_第3頁(yè)
數(shù)學(xué)中考?jí)狠S題大全含答案、詳細(xì)解析版_第4頁(yè)
數(shù)學(xué)中考?jí)狠S題大全含答案、詳細(xì)解析版_第5頁(yè)
已閱讀5頁(yè),還剩141頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

(安徽)按右圖所示的流程,輸入一個(gè)數(shù)據(jù)x,根據(jù)y(Ⅱ)新數(shù)據(jù)之間的大小關(guān)系與原數(shù)據(jù)之間的大小關(guān)系一致,即原數(shù)據(jù)大的對(duì)應(yīng)的1(1)若y與x的關(guān)系是y=x+p(100-x),請(qǐng)說(shuō)明:當(dāng)p=時(shí),這種變換滿足上2(2)若按關(guān)系式y(tǒng)=a(x-h(huán))2+k(a>0)將數(shù)據(jù)進(jìn)行變換,請(qǐng)寫(xiě)出一個(gè)滿足上述要求的這種關(guān)系式。(不要求對(duì)關(guān)系式符合題意作說(shuō)明,但要寫(xiě)出關(guān)系式得出的主要過(guò)程)121又當(dāng)x=20時(shí),y=×100+50=100。而原數(shù)據(jù)都在20~100之間,所以新數(shù)據(jù)都在60~121條件(Ⅰ),綜上可知,當(dāng)P=時(shí),這種變換滿足要求;……6分2(2)本題是開(kāi)放性問(wèn)題,答案不唯一。若所給出的關(guān)系式滿足a)h≤20b)若x=20,100時(shí),y的對(duì)應(yīng)值m,n能落在60~100之間,則這樣的關(guān)系式都符合要求。如取h=20,y=a(x-20)2+k,……8分令x=20,y=60,得k=60①令x=100,y=100,得a×802+k=100②圖象上的兩個(gè)點(diǎn).在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.C-1Oy11-1Bxo當(dāng)AC為底時(shí),由于過(guò)點(diǎn)B且平行于AC的直線與雙曲線只有一個(gè)公共點(diǎn)B,當(dāng)BC為底時(shí),過(guò)點(diǎn)A作BC的平行線,交雙曲線于點(diǎn)D,過(guò)點(diǎn)A,D分別作x軸,y軸的平行線,交于點(diǎn)F.EQ\*jc3\*hps35\o\al(\s\up13(7),3)),3DBBCCOAAFDEy如圖2,當(dāng)AB為底時(shí),過(guò)點(diǎn)C作AB的平行線,與雙曲線), 7分如圖3,當(dāng)過(guò)點(diǎn)C作AB的平行線,與雙曲線在第三象限內(nèi)的交點(diǎn)為D時(shí),x((yyCDA3、(福建龍巖)如圖,拋物線y=ax2-5ax+4經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),已知BC上,點(diǎn)C在y軸上,且AC=BC.(3)探究:若點(diǎn)P是拋物線對(duì)稱軸上且在x軸下方的動(dòng)點(diǎn),是否存在△PAB是等腰三角形.若存在,求出所有符合條件的點(diǎn)P坐標(biāo);不存在,請(qǐng)說(shuō)明理由.yC1解1)拋物線的對(duì)稱軸………21Axx1把點(diǎn)A坐標(biāo)代入y=ax2-5ax+4中,解得a=-………6分6:y=-x+4…………7分yyMA1N3P2P152為腰且頂角為角1:AB2=AQ2+BQ2=82+42=80·················8分在Rt△ANP中,PNAP2AN212AB2AN22②以AB為腰且頂角為角B的△PAB有1個(gè):△PAB.2在Rt△BM分·······················11分(3)存在符合條件的點(diǎn)(3)存在符合條件的點(diǎn)P共有3個(gè).以下分三類情形探設(shè)拋物線對(duì)稱軸與x軸交于N,與CB交于M.③以AB為底,頂角為角P的△PAB有1個(gè),即△PAB.3畫(huà)AB的垂直平分線交拋物線對(duì)稱軸于P,此時(shí)平分線必過(guò)等腰△ABC的頂點(diǎn)C.3過(guò)點(diǎn)P作PK垂直y軸,垂足為K,顯然Rt△PCK∽R(shí)t△BAQ.::3:P(2.5,1)······················3注:第(3)小題中,只寫(xiě)出點(diǎn)P的坐標(biāo),無(wú)任何說(shuō)明者不得分.4、(福州)如圖12,已知直線與雙曲線交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.(2)若雙曲線上一點(diǎn)C的縱坐標(biāo)為8,求△AOC的面積;y兩點(diǎn)(P點(diǎn)y兩點(diǎn)(P點(diǎn)A在第一象限),若由點(diǎn)A,B,P,Q為頂點(diǎn)組成的四邊形面積為xOx的坐標(biāo).B過(guò)點(diǎn)A、C分別做x軸、y軸的垂線,垂足為M、N,得矩形S矩形ONDMS矩形ONDM解法二:如圖12-2,過(guò)點(diǎn)C、A分別做x軸的垂線,垂足為E、F,DMON.8x8x△COE△COE梯形CEFA△COA△COA=S梯形CEFA.1梯形梯形CEFA(3)∵反比例函數(shù)圖象是關(guān)于原點(diǎn)O的中心對(duì)稱圖形,∴四邊形APBQ是平行四邊形.8過(guò)點(diǎn)P、A分別做x軸的垂線,垂足為E、F,解得m=2,m=-8(舍去).5、(甘肅隴南)如圖,拋物線x2+mx+n交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)P是它的頂點(diǎn),點(diǎn)A(3)請(qǐng)?zhí)骄恳渣c(diǎn)A為圓心、直徑為5的圓與直線解:(1)由已知條件可知:拋物線x2+mx∴……2分(2)x2+x-…4分∴直線PC的解析式是……設(shè)直線PC與x軸交于點(diǎn)D,則點(diǎn)D的坐標(biāo)為(3,0).………7分5∴以點(diǎn)A為圓心、直徑為5的圓與直線PC相離.…………12分6、(貴陽(yáng))如圖14,從一個(gè)直徑是2的圓形鐵皮中剪下一個(gè)圓心角為90o的扇形.(1)求這個(gè)扇形的面積(結(jié)果保留π3分)(2)在剩下的三塊余料中,能否從第③塊余料中剪出一個(gè)圓作為底面與此扇形圍成一個(gè)圓錐?請(qǐng)說(shuō)明理(3)當(dāng)eO的半徑R(R>0)為任意值時(shí)2)中的結(jié)論是否仍然成解1)連接BC,由勾股定理求得:AAB=AC=2········E③F(2)連接AO并延長(zhǎng),與弧BC和eO交于E,F(xiàn),EF=AFAE=22························1分22 1分222:(2—2)R<R··························3分2即無(wú)論半徑R為何值,EF<2r·····················4分:不能在余料③中剪出一個(gè)圓作為底面與此扇形圍成圓錐.77、(河南)如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過(guò)點(diǎn)A(6,0)和B(0,4).2(1)求拋物線解析式及頂點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,y求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;y7x=FE②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);FE8、(湖北黃崗)已知:如圖,在平面直角坐標(biāo)系中,四邊形ABCO是菱形,且∠AOC=60°,點(diǎn)B的坐標(biāo)是交OB于點(diǎn)D.(2)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的解析式;(4)當(dāng)a為何值時(shí),以O(shè),P,Q,D為頂點(diǎn)的三角形與ΔOAB相似?當(dāng)時(shí),以O(shè),P,Q,D為頂點(diǎn)的三角形與ΔOAB不相似?請(qǐng)給出你的結(jié)論,并加以證明.CyBDQOx9、(湖北荊門)如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.(2)如圖2,若翻折后點(diǎn)D落在BC邊上,求過(guò)點(diǎn)P、B、E的拋物線的函數(shù)關(guān)系式;(3)在(2)的情況下,在該拋物線上是否存在點(diǎn)Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說(shuō)明理由;若存在,求出點(diǎn)Q的坐標(biāo).BCBFDEAxAxyyDBFE∴Rt△POE∽R(shí)t△BPA.…………2分∴EQ\*jc3\*hps33\o\al(\s\up11(PO),OE)=EQ\*jc3\*hps33\o\al(\s\up11(BA),AP).即∴y=EQ\*jc3\*hps33\o\al(\s\up11(1),3)x(4-x)=-EQ\*jc3\*hps33\o\al(\s\up11(1),3)x2+EQ\*jc3\*hps33\o\al(\s\up11(4),3)x(0<x<4).且當(dāng)x=2時(shí),y有最大值.…………………4分3(2)由已知,△PAB、△POE均為等腰三角形,可得P(1,0),E(0,1),B(4,3).……6分x+1.…………8分(3)由(2)知∠EPB=90°,即點(diǎn)Q與點(diǎn)B重合時(shí)滿足條件.……9分∴該直線為y=x+1.……………10分yCEBD故該拋物線上存在兩點(diǎn)Q(4,3)、(5,6)滿足條件.……………12分65證明;若不成立,請(qǐng)說(shuō)明理由;yExx。。·················································································································解這個(gè)方程組,得Q點(diǎn)M在該拋物線上,且它的橫坐標(biāo)為,5:點(diǎn)M的縱坐標(biāo)為.···································································································5y將點(diǎn)D、M的坐標(biāo)分別代入,得MD12EQ\*jc3\*hps31\o\al(\s\up42(E),12過(guò)點(diǎn)D作DK⊥OC于點(diǎn)K,則DA=DK.:::::2::(3分)(4分)(5分)(6分)(7分)(8分)(9分)7:點(diǎn)Q的縱坐標(biāo)為.3(3,:Q110(3,③若PC=GC,則(3-t)2+22=22,過(guò)點(diǎn)Q作QH⊥x軸于點(diǎn)H,則QH=GH,設(shè)QH=h,:7(55,(55,yAEOPGQx:Q12分):Q12分)綜上所述,存在三個(gè)滿足條件的點(diǎn)Q,(2009年重慶綦江縣)2611分)如圖,已知拋物線y=a(x-1)2+33(a≠0)經(jīng)過(guò)點(diǎn)A(-2,0),拋物線的頂點(diǎn)為D,過(guò)O作射線OM∥AD.過(guò)頂點(diǎn)D平行于x軸的直線交射線OM于點(diǎn)C,B在x軸正半軸上,連結(jié)BC.(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)長(zhǎng)度單位的速度沿射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).問(wèn)當(dāng)t(3)若OC=OB,動(dòng)點(diǎn)P和動(dòng)點(diǎn)Q分別從點(diǎn)O和點(diǎn)B同時(shí)出發(fā),分別以每秒1個(gè)長(zhǎng)度單位和2個(gè)長(zhǎng)度單位的速度沿OC和BO運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為t(s),連接PQ,當(dāng)t為何值時(shí),四邊形BCPQ的面積最?。坎⑶蟪鲎钚≈导按藭r(shí)PQ的長(zhǎng).ADCP3::a=·······································································································1分3:二次函數(shù)的解析式為:y=一··················(2)QD為拋物線的頂點(diǎn)::::t=6(s)·······················································5分PA:::t=4(s):3過(guò)P作PE丄OQ于E,則PE=t··········2=2(t=2(t-2,+3················································································································9分8883············································································10分3············································································10分:QE=3--=-:PQ=((33)2(9)2(4,+(4,=······························································11分2時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間是t秒(t>0).BEQDBEQDt的函數(shù)關(guān)系式;(不必寫(xiě)出t的取值范圍)為直角梯形?若能,求t的值.若不能,請(qǐng)說(shuō)明理由;..-5(3)能.A圖QDPABEQAA222BBQDAABGDPDP(2009年河南?。?3.(11分)如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(1)直接寫(xiě)出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AB交AC于點(diǎn)E②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫(xiě)出相應(yīng)的t值.將A(4,8)、C(8,0)兩點(diǎn)坐標(biāo)分得12∴拋物線的解析式為:y=-…3分(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即1∴點(diǎn)E的坐標(biāo)為(4+t,8-t).21∵-<0,∴當(dāng)t=4時(shí),線段EG最長(zhǎng)為2.8②共有三個(gè)時(shí)刻.…8分……分別交x軸于A、B兩點(diǎn).矩形DEFG的頂點(diǎn)D、E分G與點(diǎn)B重合.(3)若矩形DEFG從原點(diǎn)出發(fā),沿x軸的反方向以每秒1個(gè)單位長(zhǎng)度的速度平移,設(shè)移動(dòng)時(shí)間為t(0≤t≤12)秒,矩形DEFG與△ABC重疊部分的面積為S,求S關(guān)t的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)的t的取值范圍.yyl2EClD:AEQ\*jc3\*hps36\o\al(\s\up18(2),3)EQ\*jc3\*hps36\o\al(\s\up18(8),3)△ABC(4分):x=4. yllDlllD2l2yllDlllD2l2RREQ\*jc3\*hps35\o\al(\s\up11(1),2)EQ\*jc3\*hps35\o\al(\s\up11(1),2)EQ\*jc3\*hps35\o\al(\s\up11(2),3)如圖(1),將正方形紙片ABCD折疊,使點(diǎn)B落在CD邊上一),AM的值,可先求AM的值,可先求BN、AM的長(zhǎng),不妨設(shè):FFBN圖點(diǎn)E(不與點(diǎn)AM的值.類比歸納為整數(shù)的值等于用含n的式子表示)聯(lián)系拓廣如圖(2),將矩形紙片ABCD折疊,使點(diǎn)B落在CD邊上一點(diǎn)E(不與點(diǎn)C,D重合),壓平后得到折痕MM解:方法一:如圖(1-1),連接BM,EM,BE.NFE由題設(shè),得四邊形ABNM和四邊形FENM關(guān)于直線MN對(duì)稱.:2.∴x2在Rt△ABM和在Rt△DEM中,AM22DM2222.∴························································································································7分方法二:同方法一,BN=.···································),54在△BCE與△NGM中EBN類比歸納 EQ\*jc3\*hps35\o\al(\s\up8(2),5)EQ\*jc3\*hps35\o\al(\s\up8(4),10));EQ\*jc3\*hps35\o\al(\s\up8(9),7)聯(lián)系拓廣n2m2+1評(píng)分說(shuō)明:1.如你的正確解法與上述提供的參考答案不同時(shí),可參照評(píng)分說(shuō)明進(jìn)行估分.2.如解答題由多個(gè)問(wèn)題組成,前一問(wèn)題解答有誤或未答,對(duì)后面問(wèn)題的解答沒(méi)有影響,可依據(jù)參考答案及評(píng)分說(shuō)明進(jìn)行估分.(2009年安徽?。?3.已知某種水果的批發(fā)單價(jià)與批發(fā)量的函數(shù)關(guān)系如圖(1)所示.(1)請(qǐng)說(shuō)明圖中①、②兩段函數(shù)圖象的實(shí)際意義.【解】①5②4(2)寫(xiě)出批發(fā)該種水果的資金金額w(元)與批發(fā)量m(kg)之間的函數(shù)關(guān)系式;在下圖的坐標(biāo)系中畫(huà)出該函數(shù)圖象;指出金額在什么范圍內(nèi),以同樣的資金可以批發(fā)到較多數(shù)量的該種水果.【解】(3)經(jīng)調(diào)查,某經(jīng)銷商銷售該種水果的日最高銷量與零售價(jià)之間的函數(shù)關(guān)系如圖(2)所示,該經(jīng)銷商擬每日售出60kg以上且當(dāng)日零售價(jià)不變,請(qǐng)你幫助該經(jīng)銷商設(shè)計(jì)進(jìn)貨和銷售的方案,使得當(dāng)日獲得的利潤(rùn)最大.【解】日日40(7,231)解:圖①表示批發(fā)量不少于20kg且不多于60kg的該種水果,圖②表示批發(fā)量高于60kg的該種水果,可按4元/kg批發(fā).………………3分(2)解:由題意得函數(shù)圖象如圖所示.………………7分由圖可知資金金額滿足240<w≤300時(shí),以同樣的資金可批發(fā)到較多數(shù)量的該種水果.……………8分(3)解法一:設(shè)當(dāng)日零售價(jià)為x元,由圖可得日最高銷量w=320-40m由題意,銷售利潤(rùn)為y=(x-4)(320-40m)=40[-(x-6)2+4]………………12分即經(jīng)銷商應(yīng)批發(fā)80kg該種水果,日零售價(jià)定為6元/kg,當(dāng)日可獲得最大利潤(rùn)160元.……………14分設(shè)日最高銷售量為xkg(x>60)銷售利潤(rùn)2+160………即經(jīng)銷商應(yīng)批發(fā)80kg該種水果,日零售價(jià)定為6元/kg,當(dāng)日可獲得最大利潤(rùn)160元.……………14分(1)求點(diǎn)E到BC的距離;(2)點(diǎn)P為線段EF上的一個(gè)動(dòng)點(diǎn),過(guò)P作PM丄EF交BC于點(diǎn)M,過(guò)M作MN∥AB交折線ADC于點(diǎn)①當(dāng)點(diǎn)N在線段AD上時(shí)(如圖2),△PMN的形狀是否②當(dāng)點(diǎn)N在線段DC上時(shí)(如圖3),是否存在點(diǎn)P,使△PMN為等腰三角形?若存在,請(qǐng)求出所有滿足要求的x的值;若不存在,請(qǐng)說(shuō)明理由.BAENPMDMBAEE121(2)①當(dāng)點(diǎn)N在線段AD上運(yùn)動(dòng)時(shí),△PMN的形狀不發(fā)生改變.AEGC如圖2,過(guò)點(diǎn)P作PH丄MN于H,∵M(jìn)N∥AB,AHB2EQ\*jc3\*hps36\o\al(\s\up13(5),2)2②當(dāng)點(diǎn)N在線段DC上運(yùn)動(dòng)時(shí),△PMN的形狀發(fā)生改變,但△MNC恒為等邊三角形.···············································8分AAMMAAMMDFNMA)4(2)過(guò)y軸上的一點(diǎn)M(0,m)作y軸的垂線,若該垂線與ΔABC的外接圓(3)在該二次函數(shù)的圖象上是否存在點(diǎn)D,使四邊形ABCD為直角梯形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。解1)OC=1,所以,q=-1,又由面積知0.5OC×AB=,得AB=,設(shè)AB=b-a=,解得p=±,但p<0,所以p=-所以解析式為:y=x2-(2)令y=0,解方程得x-1=0,得x1=-,x2=2,所以在直角三角形AOC5中可求得AC=,同樣可求得BC=5,,顯然AC2+BC2=AB2,得三角形ABC是直2為斜邊,所以外接圓的直徑為,所以-(3)存在,AC⊥BC,①若以AC為底邊,則BD//AC,易求AC的解析式為y=-2x-1,可設(shè)BD的解析式為y=-2x+b,把B(2,0)代入得BD解析式為y=-2x+4,解方程組-1得D②若以BC為底邊,則BC//AD,易求BC的解析式為y=0.5x-1,可設(shè)AD的解析式為y=0.5x+代入得AD解析式為y=0.5x+0.25,解方程組)綜上,所以存在兩點(diǎn):(-,9)或(,)。當(dāng)M點(diǎn)在BC上運(yùn)動(dòng)時(shí),保持AM和MN垂直.N如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為3,4△PMB的面積為S(S≠0點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式(要求寫(xiě)出自變量t的取值范(3)在(2)的條件下,當(dāng)t為何值時(shí),∠MPB與∠BCO互為余角,并求此時(shí)直線OP與直線AC所夾銳角的正切值.(1)求證:BE=AD;(3)△DBC是等腰三角形嗎?并說(shuō)明理由。由等腰三角形的性質(zhì),得:EM=MD,AM⊥DE。即,AC是線段ED的垂直平分線。(3)△DBC是等腰三角(CD=BD)8分kx的結(jié)論.yNyNEK(第25題圖(第25題圖::四邊形BDOF為矩形.:yAKAKDO:S矩形BDOF:S=S矩形BDOF矩形AEDK=S矩形DOCKS矩形CFBK=S矩形BDOF矩形DOCK:S=S.···································································································矩形AEDK矩形CFBKS矩形AEDK=S矩形CFBK.:AKgDK=BKgCK.AKBK——=——.··········································CKDK△AKB∽△CKD.······7CDK=7ABK.AB∥CD.····························································································································6分四邊形ACDN是平行四邊形.AN=CD.·············AN=BM.·······································(2)AN與BM仍然相等.·····································································································9分矩形AEDK=S+S矩形ODKC矩形BKCF矩形BDOF矩形ODKCy矩形AEDK矩形BKCFAKBK7CDK=7ABK.AB∥CD.··························································································································11分AN=BM.······························(2)經(jīng)過(guò)C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;),A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,解得(2)存在.yyCMyyDENOFCNAM.·············································· 6分(3)△AEF是等腰直角三角形.A:A::···············································11分:,(是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.(3)將圖①中△BEF繞B點(diǎn)旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(wèn)(1)中的結(jié)論是否仍然成立?通過(guò)觀察你還能得出什么結(jié)論?(均不要求證明)EAAGGFBAAEB(21)中結(jié)論仍然成立,即EG=CG.…………4分∴MF=CD,∠FMG=∠DCG.(31)中的結(jié)論仍然成立,如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D于點(diǎn)A和點(diǎn)C.(2)拋物線的對(duì)稱軸交x軸于點(diǎn)E,連結(jié)DE,并延長(zhǎng)DE交圓O于F,求EF的長(zhǎng).(3)過(guò)點(diǎn)B作圓O的切線交DC的延長(zhǎng)線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說(shuō)明理由.yyEMB解1)Q圓心O在坐標(biāo)原點(diǎn),圓O的半徑為1,Q拋物線與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C,:拋物線的解析式為:y=-x2+x+1.················································································4分1:2:::=,AMOBNEFP:EF=FD-DE=.···············································································8分(3)點(diǎn)P在拋物線上.·············································································································9分:直線DC為:y=-x+1.························:P點(diǎn)的坐標(biāo)為(2,-1),········································································································11分2說(shuō)明:解答題各小題中只給出了1種解法,其它解法只要步驟合理、解答正確均應(yīng)得到相應(yīng)的分?jǐn)?shù).形與△OAC相似?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;y4Ax4AxC:得{解得:此拋物線的解析式為y=-x2+x-2.········(2)存在.·························································································································(4分)如圖,設(shè)P點(diǎn)的橫坐標(biāo)為m,2AMAO2:yDEE-2C4題x),: (7分)(3)如圖,設(shè)D點(diǎn)的橫坐標(biāo)為t(0<t<4),則D點(diǎn)的縱坐標(biāo)為-t2+t-2.過(guò)D作y軸的平行線交AC于E.(8分)(9分)12(1)::DE=-t2+t-2-t-2=-t2+2tEQ\*jc3\*hps35\o\al(\s\up12(1),2)EQ\*jc3\*hps35\o\al(\s\up12(1),2)2:當(dāng)t=2時(shí),△DAC面積最大.:在平面直角坐標(biāo)中,邊長(zhǎng)為2的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,點(diǎn)O在原AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N(如圖).(1)求邊OA在旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積;(2)旋轉(zhuǎn)過(guò)程中,當(dāng)MN和AC平行時(shí),求正方的過(guò)程中,p值是否有變化?請(qǐng)證明你的結(jié)論.yyAMBC形12∴旋轉(zhuǎn)過(guò)程中,當(dāng)MN和AC平行時(shí),正方形OABC旋轉(zhuǎn)的度數(shù)為.……………8分(3)答:p值無(wú)變化.00∴在旋轉(zhuǎn)正方形OABC的過(guò)程中,p值無(wú)變化.……………12分yyEAMBC(2009年四川遂寧市)25.如圖,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)D(0,73),且頂點(diǎn)C的橫坐標(biāo)為4,該圖象在x軸9上截得的線段AB的長(zhǎng)為6.⑵在該拋物線的對(duì)稱軸上找一點(diǎn)P,使PA+PD最小,求出點(diǎn)P的坐標(biāo);⑶在拋物線上是否存在點(diǎn)Q,使△QAB與△ABC相似?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理25.⑴設(shè)二次函數(shù)的解析式為:y=a(x-h)2+k9又∵對(duì)稱軸為直線x=4,圖象在x軸上截得的線段長(zhǎng)為6∴A(1,0),B(7,0) ②∴二次函數(shù)的解析式為⑵∵點(diǎn)A、B關(guān)于直線x=4對(duì)稱∴DB與對(duì)稱軸的交點(diǎn)即為所求點(diǎn)P設(shè)直線x=4與x軸交于點(diǎn)M∵PM∥OD,∴∠BPM=∠BDO,又∠PBM=∠DBO73∴∠ACM=60o,∵AC=BC,∴∠ACB=120o①當(dāng)點(diǎn)Q在x軸上方時(shí),過(guò)Q作QN⊥x軸于N如果AB=BQ,由△ABC∽△ABQ有BQ=6,∠ABQ=120o,則∠QBN=60o如果AB=AQ,由對(duì)稱性知Q(-2,33)經(jīng)檢驗(yàn),點(diǎn)(10,33)與(-2,33)都在拋物線上綜上所述,存在這樣的點(diǎn)Q,使△QAB∽△ABC(1)求正比例函數(shù)和反比例函數(shù)的解析式;33若不存在,請(qǐng)說(shuō)明理由.D21.解1)設(shè)正比例函數(shù)的解析式為y=kx(k≠0),1這個(gè)正比例函數(shù)的解析式為y=x.·················································································(1分)9這個(gè)反比例函數(shù)的解析式為y=.················································································(2分)x(2)因?yàn)辄c(diǎn)B(6,m)在y=的圖象上,所以x93(3)····························································································93(3)····························································································設(shè)一次函數(shù)解析式為y=kx+b(k≠0).33(3)(2,(2,=6+b,解得b=-9:一次函數(shù)的解析式為y=x-.··················································································(4分)29(9)設(shè)二次函數(shù)的解析式為y=ax2+bx+c(a≠0).EQ\*jc3\*hps35\o\al(\s\up13(3),2)EQ\*jc3\*hps35\o\al(\s\up13(9),2)[EQ\*jc3\*hps38\o\al(\s\up13(3),2)[這個(gè)二次函數(shù)的解析式為y=-x2+4x-.····························································(6分)y3y3ED9(9)(4)Qy=x-2交x軸于點(diǎn)C,:點(diǎn)C的坐標(biāo)是(2,0,,=45-18--=.4Q四邊形CDOE的頂點(diǎn)E只能在x軸上方,:y>0,000:+y=,:y=.·······················································································(7分):-x2+4x-=.解得x=2或x=6.(3)=6時(shí),點(diǎn)E(6,2,與點(diǎn)B重合,這時(shí)CDOE(3)··································································································:點(diǎn)E的坐標(biāo)為(2,2,(3)··································································································(2)將△OAB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)B落到點(diǎn)C的位置,將拋物線沿y軸平移后經(jīng)過(guò)點(diǎn)C,求平移(3)設(shè)(2)中平移后,所得拋物線與y軸的交點(diǎn)為B,頂點(diǎn)為D,若點(diǎn)N在平移后的拋物線上,且滿足△NBB的面積是△NDD面積的2倍,求點(diǎn)N的坐標(biāo).yB:{解得:所求拋物線的解析式為y=x2-3x+2. 2分 3分:將原拋物線沿y軸向下平移1個(gè)單位后過(guò)點(diǎn)C.:平移后的拋物線解析式為:y=x2-3x+1.·····································································5分(3)Q點(diǎn)N在y=x2-3x+1上,可設(shè)N點(diǎn)坐標(biāo)為(x,x2-3x+1)將y=x2-3x+1配方得y其對(duì)稱軸為x=EQ\*jc3\*hps35\o\al(\s\up12(3),2).3BEQ\*jc3\*hps35\o\al(\s\up12(1),2)EQ\*jc3\*hps35\o\al(\s\up12(1),2)EQ\*jc3\*hps35\o\al(\s\up12(3),2)OADCx0此時(shí)x2-3x+1=-1:N點(diǎn)的坐標(biāo)為(1,-1).···············3②當(dāng)x>時(shí),如圖②EQ\*jc3\*hps31\o\al(\s\up20(N),C):x0=3D1此時(shí)x2-3x+1=1(2)已知點(diǎn)D(m,m+1)在第一象限的拋物線上,求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)的坐標(biāo);(3)在(2)的條件下,連接BD,點(diǎn)P為拋物線上一點(diǎn),且LDBP=45°,求點(diǎn)P的坐標(biāo).yCAx解得:拋物線的解析式為y=-x2+3x+4.:y:DQ點(diǎn)D在第一象限,設(shè)點(diǎn)D關(guān)于直線BC的對(duì)稱點(diǎn)為點(diǎn)E.Ax:CD∥AB,且CD=3,x:::即點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)的坐標(biāo)為(0,1).yyP:CD∥OB且CD=3PABOABO:DE=CE=2::2:::P(5,25,.方法二:過(guò)點(diǎn)D作BD的垂線交直線PB于點(diǎn)Q,過(guò)點(diǎn)D作DH⊥x軸于H.過(guò)Q點(diǎn)作QG⊥DH于G.:QD=DB.yCQ。又LDQG+LQDG=90,:LDQG=LBDH.。:直線BP的解析式為.解方程組:點(diǎn)P的坐標(biāo)為.(2009年鄂州市)27.如圖所示,將矩形OABC沿AE折疊,使點(diǎn)O恰好落在BC上F處,以CF為=||,出此拋物線的解析式.(4)在(3)的條件下,若拋物線y=mK為頂點(diǎn)的三角形與△AEF相似?若存在,請(qǐng)求直線KP與y軸的交點(diǎn)T的坐標(biāo)?若不存在,請(qǐng)說(shuō)明理由。(2)m為定值S四邊形CMNO=CMCO=|CE―EO|CO=(EO―EC)COS四邊形CMNO=CMCO=|CE―EO|CO=(EO―EC)COS1……………………4分S-12223332),333…8分…8分3233方法2:若△BPK與△AEF相似,由(3)得:∠BPK=30°或60°,過(guò)P作PR⊥y軸于R,則∠RTP=60°或30°334如圖甲,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一動(dòng)點(diǎn),連結(jié)AD,以AD為一邊且在AD的右側(cè)作正方形ADEF。(1)如果AB=AC,∠BAC=90°,①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CF、BD之間試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)C、F重合除外)?畫(huà)出相應(yīng)圖形,并說(shuō)明理由。(畫(huà)(3)若AC=42,BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交24、解1)①CF⊥BD,CF=BD又BA=CAAD=AF(2)當(dāng)∠ACB=45°時(shí)可得CF⊥BC,理由如下:如圖:過(guò)點(diǎn)A作AC的垂線與CB所在直線交于G∴∠ADQ+∠CDP=∠CDP+∠CPD=90°如圖,點(diǎn)P是雙曲線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸、y軸的垂線,分別交x軸、y軸于x(-;(②記S=S-S,S2是否有最小值?若有,求出其最小值;若沒(méi)有,請(qǐng)說(shuō)明理由5分)),),),),).1=k+k224…………直線解析式,利用這兩個(gè)解析式中x的系數(shù)相等來(lái)證明AB∥EF;方法二:利用tan7PAB=論.(2)若m為小于0的常數(shù),那么(1)中的若不存在,請(qǐng)說(shuō)明理由.yyDCEQ\*jc3\*hps32\o\al(\s\up8(1),2)EQ\*jc3\*hps32\o\al(\s\up8(1),2)2(2)∵m為小于零的常數(shù),∴只需將拋物線向右平移-m個(gè)單位,再向上平移2個(gè)單位,可以使拋物線y=EQ\*jc3\*hps32\o\al(\s\up8(1),2)-2頂點(diǎn)在坐標(biāo)原點(diǎn).………7分EQ\*jc3\*hps32\o\al(\s\up8(1),2)EQ\*jc3\*hps32\o\al(\s\up8(1),2)2=-=-=-形.(3)在(2)中:①當(dāng)動(dòng)點(diǎn)P、Q運(yùn)動(dòng)到何處時(shí),以點(diǎn)P、M和點(diǎn)A、B、C、D中的兩個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?并指出符合條件的平行四邊形的個(gè)數(shù);②當(dāng)y取最小值時(shí),判斷△PQC的形狀,并說(shuō)明理由.MAQBM261)證明:“△MBC是等邊三角形M““ADⅡBC:△AMB纟△DMC············:梯形ABCD是等腰梯形.··········································································3分:上BMP=上QPC···································································································4分:△BMP∞△CQP:·······································································5分 6分則四邊形ABPM和四邊形MBPD均為平行四邊形+4=············································則四邊形MPCD和四邊形APCM均為平行四邊形:MQ=y=×11+4=···························點(diǎn)的四邊形是平行四邊形.此時(shí)平行四邊形有4個(gè). 10分②△PQC為直角三角形 11分:當(dāng)y取最小值時(shí),x=PC=2··············································0)為頂點(diǎn)的拋物線過(guò)點(diǎn)B、D.(3)設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連結(jié)PQ于點(diǎn)F,試證明:FC(AC+EC)為定值.yyBEQD3解得拋物線的解析式為y=x22x+1………7分EQ\*jc3\*hps35\o\al(\s\up10(QN),FC)EQ\*jc3\*hps35\o\al(\s\up10(BN),BC)即FC(AC+EC)為定值8.……12分),(1)當(dāng)點(diǎn)M在AB上運(yùn)動(dòng)時(shí),你認(rèn)為四邊形OCMD的周長(zhǎng)是否發(fā)生變化?并說(shuō)明理由;(3)當(dāng)四邊形OCMD為正方形時(shí),將四邊形OCMD沿著x軸的正方向移動(dòng),設(shè)平移的距離為數(shù)的圖象.ByBByMDCxAOOCxAOOx解1)設(shè)點(diǎn)M的橫坐標(biāo)為x,則點(diǎn)M的縱坐標(biāo)為-x+4(0<x<4,x>0x+4>0則:MC=∣-x+4∣=-x+4,MD=∣x∣=x;四邊形OCMD=2(MC+MD2x+4+x8∴當(dāng)點(diǎn)M在AB上運(yùn)動(dòng)時(shí),四邊形OCMD的周長(zhǎng)不發(fā)生變化,總是等于8;=(-=-=-動(dòng)到線段AB的中點(diǎn)時(shí),四邊形OCMD的面積最大且最大面積為4;SS22EQ\*jc3\*hps31\o\al(\s\up6(·),4)aS=240重合時(shí)停止,設(shè)運(yùn)動(dòng)的時(shí)間為t秒,運(yùn)動(dòng)后的直角請(qǐng)求出此時(shí)t的值;若不能,請(qǐng)說(shuō)明理由.部分的面積為y,求y與t的函數(shù)關(guān)系. (2)①能為正方形…………………4分又∠C=90°,∴四邊形CDH′H為矩形……33積.…………9分∴y=40-2t……………………10分33442=(8-t8-=(8-t)2=t2-6t+24(0≤t≤4)1t2-6t+24(5<t≤8)3(注:評(píng)分時(shí),考生未作結(jié)論不扣分)Ba三條直線,外側(cè)兩種計(jì)算三角形面積鉛垂高乘積的一半.9△CAB,若存在,求出P點(diǎn)的坐標(biāo);若yCBD1xEQ\*jc3\*hps31\o\al(\s\up0(·),1)EQ\*jc3\*hps31\o\al(\s\up0(·),2)EQ\*jc3\*hps31\o\al(\s\up0(·),2)····································1分22所以y222922解得P點(diǎn)坐標(biāo)為(,)···················································································14..),..(3)如圖③,現(xiàn)在一塊矩形鋼板ABCD,AB=4,BC=3.工人DA①CBDA②C題DA③CB:點(diǎn)P為所求.··························································(3分)(2)如圖②,畫(huà)法如下:(3)如圖③,畫(huà)法如下:(評(píng)卷時(shí),作圖準(zhǔn)確,無(wú)畫(huà)法的不扣分)DAPP①FFEOABAPGO③:2:BG=················································································:S△APB=.···································),),;(),),時(shí),求點(diǎn)Q的坐標(biāo)5分)1y1yMAOC3x25991AAOPNEC4解1)由拋物線為(-2,-5)………∴yy1GAGA),),根據(jù)勾股定理得C422+2+10m4的三角形是直角三角形.………13分如圖,已知拋物線與x交于A(-1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3)。(3)△AOB與△DBE是否相似?如果相似,請(qǐng)給以證明;如果不相似,請(qǐng)說(shuō)明理由。根據(jù)題意,得{,解得{設(shè)對(duì)稱軸與x軸的交點(diǎn)為FEF.DFEF.DF22122222(1)求證:不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn)。(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個(gè)交點(diǎn)的距離為13時(shí),求出此二次函數(shù)的解析式。(3)若此二次函數(shù)圖象與x軸交于A、B兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由。2所以不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn)?!?分) 又因?yàn)椋篴<0所以:a=-1 (3)設(shè)點(diǎn)P的坐標(biāo)為(x,y),因?yàn)楹瘮?shù)圖象與x軸的兩個(gè)交點(diǎn)間的距離等于13,所以: 所以: 0解此方程得:x0=0或1……(11分)綜上所述,所以存在這樣的P點(diǎn),P點(diǎn)坐標(biāo)是(-2,3),(3,3),(0D出發(fā),也以1個(gè)單位長(zhǎng)度/秒的速度沿射線DE的方向作勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.11②當(dāng)△PAB為等腰三角形時(shí),求t的值.yyEOx(34)(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論