湖北省宜昌市2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
湖北省宜昌市2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
湖北省宜昌市2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
湖北省宜昌市2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
湖北省宜昌市2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省宜昌市2025屆高三第三次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為了加強(qiáng)“精準(zhǔn)扶貧”,實(shí)現(xiàn)偉大復(fù)興的“中國(guó)夢(mèng)”,某大學(xué)派遣甲、乙、丙、丁、戊五位同學(xué)參加三個(gè)貧困縣的調(diào)研工作,每個(gè)縣至少去1人,且甲、乙兩人約定去同一個(gè)貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.642.函數(shù)在上的圖象大致為()A. B.C. D.3.過(guò)拋物線(xiàn)()的焦點(diǎn)且傾斜角為的直線(xiàn)交拋物線(xiàn)于兩點(diǎn).,且在第一象限,則()A. B. C. D.4.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.5.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a6.若各項(xiàng)均為正數(shù)的等比數(shù)列滿(mǎn)足,則公比()A.1 B.2 C.3 D.47.已知雙曲線(xiàn),點(diǎn)是直線(xiàn)上任意一點(diǎn),若圓與雙曲線(xiàn)的右支沒(méi)有公共點(diǎn),則雙曲線(xiàn)的離心率取值范圍是().A. B. C. D.8.定義在R上的函數(shù)滿(mǎn)足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個(gè)正數(shù)滿(mǎn)足,的取值范圍是()A. B. C. D.9.在中,角所對(duì)的邊分別為,已知,則()A.或 B. C. D.或10.正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則()A. B.1 C. D.211.已知奇函數(shù)是上的減函數(shù),若滿(mǎn)足不等式組,則的最小值為()A.-4 B.-2 C.0 D.412.某市氣象部門(mén)根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線(xiàn)圖,那么,下列敘述錯(cuò)誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢(shì)二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿(mǎn)足約束條件,則的最小值為_(kāi)_____.14.已知,則_____。15.如圖,在長(zhǎng)方體中,,E,F(xiàn),G分別為的中點(diǎn),點(diǎn)P在平面ABCD內(nèi),若直線(xiàn)平面EFG,則線(xiàn)段長(zhǎng)度的最小值是________________.16.二項(xiàng)式的展開(kāi)式的各項(xiàng)系數(shù)之和為_(kāi)____,含項(xiàng)的系數(shù)為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù))(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導(dǎo)數(shù)相等,證明:;(3)當(dāng)時(shí),證明:對(duì)于任意,若,則直線(xiàn)與曲線(xiàn)有唯一公共點(diǎn)(注:當(dāng)時(shí),直線(xiàn)與曲線(xiàn)的交點(diǎn)在y軸兩側(cè)).18.(12分)已知是各項(xiàng)都為正數(shù)的數(shù)列,其前項(xiàng)和為,且為與的等差中項(xiàng).(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求的前100項(xiàng)和.19.(12分)選修4-5:不等式選講已知函數(shù)的最大值為3,其中.(1)求的值;(2)若,,,求證:20.(12分)已知函數(shù).(1)若是函數(shù)的極值點(diǎn),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),證明:21.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且,(,且)(1)求數(shù)列的通項(xiàng)公式;(2)證明:當(dāng)時(shí),22.(10分)已知不等式對(duì)于任意的恒成立.(1)求實(shí)數(shù)m的取值范圍;(2)若m的最大值為M,且正實(shí)數(shù)a,b,c滿(mǎn)足.求證.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當(dāng)按照進(jìn)行分配時(shí),則有種不同的方案;當(dāng)按照進(jìn)行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點(diǎn)睛】本題考查排列組合、數(shù)學(xué)文化,還考查數(shù)學(xué)建模能力以及分類(lèi)討論思想,屬于中檔題.2、A【解析】

首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對(duì)稱(chēng),排除C;而,排除B;,排除D.故選:.【點(diǎn)睛】本題考查函數(shù)圖象的識(shí)別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.3、C【解析】

作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準(zhǔn)線(xiàn):,作,;,設(shè),故,,.故選:C【點(diǎn)睛】本題考查了拋物線(xiàn)的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.4、A【解析】

根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個(gè)零點(diǎn),即可對(duì)選項(xiàng)逐個(gè)驗(yàn)證即可得出.【詳解】首先對(duì)4個(gè)選項(xiàng)進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個(gè)選項(xiàng),對(duì)其在上的零點(diǎn)個(gè)數(shù)進(jìn)行判斷,在上無(wú)零點(diǎn),不符合題意,排除D;然后,對(duì)剩下的2個(gè)選項(xiàng),進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點(diǎn)睛】本題主要考查圖象的識(shí)別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.5、C【解析】

兩復(fù)數(shù)相等,實(shí)部與虛部對(duì)應(yīng)相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,屬于基礎(chǔ)題.6、C【解析】

由正項(xiàng)等比數(shù)列滿(mǎn)足,即,又,即,運(yùn)算即可得解.【詳解】解:因?yàn)?,所以,又,所以,又,解?故選:C.【點(diǎn)睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.7、B【解析】

先求出雙曲線(xiàn)的漸近線(xiàn)方程,可得則直線(xiàn)與直線(xiàn)的距離,根據(jù)圓與雙曲線(xiàn)的右支沒(méi)有公共點(diǎn),可得,解得即可.【詳解】由題意,雙曲線(xiàn)的一條漸近線(xiàn)方程為,即,∵是直線(xiàn)上任意一點(diǎn),則直線(xiàn)與直線(xiàn)的距離,∵圓與雙曲線(xiàn)的右支沒(méi)有公共點(diǎn),則,∴,即,又故的取值范圍為,故選:B.【點(diǎn)睛】本題主要考查了直線(xiàn)和雙曲線(xiàn)的位置關(guān)系,以及兩平行線(xiàn)間的距離公式,其中解答中根據(jù)圓與雙曲線(xiàn)的右支沒(méi)有公共點(diǎn)得出是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.8、C【解析】

先從函數(shù)單調(diào)性判斷的取值范圍,再通過(guò)題中所給的是正數(shù)這一條件和常用不等式方法來(lái)確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識(shí),屬于中檔題.9、D【解析】

根據(jù)正弦定理得到,化簡(jiǎn)得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點(diǎn)睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計(jì)算能力.10、B【解析】

根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個(gè)根∴又是正項(xiàng)等比數(shù)列,所以∴.故選:B【點(diǎn)睛】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.11、B【解析】

根據(jù)函數(shù)的奇偶性和單調(diào)性得到可行域,畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】奇函數(shù)是上的減函數(shù),則,且,畫(huà)出可行域和目標(biāo)函數(shù),,即,表示直線(xiàn)與軸截距的相反數(shù),根據(jù)平移得到:當(dāng)直線(xiàn)過(guò)點(diǎn),即時(shí),有最小值為.故選:.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性和奇偶性,線(xiàn)性規(guī)劃問(wèn)題,意在考查學(xué)生的綜合應(yīng)用能力,畫(huà)出圖像是解題的關(guān)鍵.12、D【解析】

根據(jù)折線(xiàn)圖依次判斷每個(gè)選項(xiàng)得到答案.【詳解】由繪制出的折線(xiàn)圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個(gè),故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查了折線(xiàn)圖,意在考查學(xué)生的理解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出滿(mǎn)足約束條件的可行域,將目標(biāo)函數(shù)視為可行解與點(diǎn)的斜率,觀察圖形斜率最小在點(diǎn)B處,聯(lián)立,解得點(diǎn)B坐標(biāo),即可求得答案.【詳解】作出滿(mǎn)足約束條件的可行域,該目標(biāo)函數(shù)視為可行解與點(diǎn)的斜率,故由題可知,聯(lián)立得,聯(lián)立得所以,故所以的最小值為故答案為:【點(diǎn)睛】本題考查分式型目標(biāo)函數(shù)的線(xiàn)性規(guī)劃問(wèn)題,屬于簡(jiǎn)單題.14、【解析】

由已知求,再利用和角正切公式,求得,【詳解】因?yàn)樗詂os因此.【點(diǎn)睛】本題考查了同角三角函數(shù)基本關(guān)系式與和角的正切公式。15、【解析】

如圖,連接,證明平面平面EFG.因?yàn)橹本€(xiàn)平面EFG,所以點(diǎn)P在直線(xiàn)AC上.當(dāng)時(shí).線(xiàn)段的長(zhǎng)度最小,再求此時(shí)的得解.【詳解】如圖,連接,因?yàn)镋,F(xiàn),G分別為AB,BC,的中點(diǎn),所以,平面,則平面.因?yàn)?,所以同理得平面,?所以平面平面EFG.因?yàn)橹本€(xiàn)平面EFG,所以點(diǎn)P在直線(xiàn)AC上.在中,,故當(dāng)時(shí).線(xiàn)段的長(zhǎng)度最小,最小值為.故答案為:【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,考查立體幾何中的軌跡問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.16、【解析】

將代入二項(xiàng)式可得展開(kāi)式各項(xiàng)系數(shù)之和,寫(xiě)出二項(xiàng)展開(kāi)式通項(xiàng),令的指數(shù)為,求出參數(shù)的值,代入通項(xiàng)即可得出項(xiàng)的系數(shù).【詳解】將代入二項(xiàng)式可得展開(kāi)式各項(xiàng)系數(shù)和為.二項(xiàng)式的展開(kāi)式通項(xiàng)為,令,解得,因此,展開(kāi)式中含項(xiàng)的系數(shù)為.故答案為:;.【點(diǎn)睛】本題考查了二項(xiàng)式定理及二項(xiàng)式展開(kāi)式通項(xiàng)公式,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析;(3)見(jiàn)解析【解析】

(1)需滿(mǎn)足恒成立,只需即可;(2)根據(jù)的單調(diào)性,構(gòu)造新函數(shù),并令,根據(jù)的單調(diào)性即可得證;(3)將問(wèn)題轉(zhuǎn)化為證明有唯一實(shí)數(shù)解,對(duì)求導(dǎo),判斷其單調(diào)性,結(jié)合題目條件與不等式的放縮,即可得證.【詳解】;令,則恒成立;,;的取值范圍是;(2)證明:由(1)知,在上單調(diào)遞減,在上單調(diào)遞增;;令,;則;令,則;;;(3)證明:,,要證明有唯一實(shí)數(shù)解;當(dāng)時(shí),;當(dāng)時(shí),;即對(duì)于任意實(shí)數(shù),一定有解;;當(dāng)時(shí),有兩個(gè)極值點(diǎn);函數(shù)在,,上單調(diào)遞增,在上單調(diào)遞減;又;只需,在時(shí)恒成立;只需;令,其中一個(gè)正解是;,;單調(diào)遞增,,(1);;;綜上得證.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)證明不等式,考查了轉(zhuǎn)化思想、不等式的放縮,屬難題.18、(1)證明見(jiàn)解析;(2).【解析】

(1)利用已知條件化簡(jiǎn)出,當(dāng)時(shí),,當(dāng)時(shí),再利用進(jìn)行化簡(jiǎn),得出,即可證明出為等差數(shù)列;(2)根據(jù)(1)中,求出數(shù)列的通項(xiàng)公式,再化簡(jiǎn)出,可直接求出的前100項(xiàng)和.【詳解】解:(1)由題意知,即,①當(dāng)時(shí),由①式可得;又時(shí),有,代入①式得,整理得,∴是首項(xiàng)為1,公差為1的等差數(shù)列.(2)由(1)可得,∵是各項(xiàng)都為正數(shù),∴,∴,又,∴,則,,即:.∴的前100項(xiàng)和.【點(diǎn)睛】本題考查數(shù)列遞推關(guān)系的應(yīng)用,通項(xiàng)公式的求法以及裂項(xiàng)相消法求和,考查分析解題能力和計(jì)算能力.19、(1)(2)見(jiàn)解析【解析】

(1)分三種情況去絕對(duì)值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉(zhuǎn)化為2ab≥1,再構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷單調(diào)性求出最小值可證.【詳解】(1)∵,∴.∴當(dāng)時(shí),取得最大值.∴.(2)由(Ⅰ),得,.∵,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴.令,.則在上單調(diào)遞減.∴.∴當(dāng)時(shí),.∴.【點(diǎn)睛】本題考查了絕對(duì)值不等式的解法,屬中檔題.本題主要考查了絕對(duì)值不等式的求解,以及不等式的恒成立問(wèn)題,其中解答中根據(jù)絕對(duì)值的定義,合理去掉絕對(duì)值號(hào),及合理轉(zhuǎn)化恒成立問(wèn)題是解答本題的關(guān)鍵,著重考查分析問(wèn)題和解答問(wèn)題的能力,以及轉(zhuǎn)化思想的應(yīng)用.20、(1)遞減區(qū)間為(-1,0),遞增區(qū)間為(2)見(jiàn)解析【解析】

(1)根據(jù)函數(shù)解析式,先求得導(dǎo)函數(shù),由是函數(shù)的極值點(diǎn)可求得參數(shù).求得函數(shù)定義域,并根據(jù)導(dǎo)函數(shù)的符號(hào)即可判斷單調(diào)區(qū)間.(2)當(dāng)時(shí),.代入函數(shù)解析式放縮為,代入證明的不等式可化為,構(gòu)造函數(shù),并求得,由函數(shù)單調(diào)性及零點(diǎn)存在定理可知存在唯一的,使得成立,因而求得函數(shù)的最小值,由對(duì)數(shù)式變形化簡(jiǎn)可證明,即成立,原不等式得證.【詳解】(1)函數(shù)可求得,則解得所以,定義域?yàn)椋趩握{(diào)遞增,而,∴當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,此時(shí)是函數(shù)的極小值點(diǎn),的遞減區(qū)間為,遞增區(qū)間為(2)證明:當(dāng)時(shí),,因此要證當(dāng)時(shí),,只需證明,即令,則,在是單調(diào)遞增,而,∴存在唯一的,使得,當(dāng),單調(diào)遞減,當(dāng),單調(diào)遞增

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論