




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
重慶市聚奎中學2025屆高三下學期第五次調(diào)研考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.新聞出版業(yè)不斷推進供給側結構性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質出口產(chǎn)品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是()A.2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加B.2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍C.2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍D.2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一2.已知滿足,,,則在上的投影為()A. B. C. D.23.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或4.如圖,在三棱柱中,底面為正三角形,側棱垂直底面,.若分別是棱上的點,且,,則異面直線與所成角的余弦值為()A. B. C. D.5.我國南北朝時的數(shù)學著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤6.已知非零向量滿足,若夾角的余弦值為,且,則實數(shù)的值為()A. B. C.或 D.7.在展開式中的常數(shù)項為A.1 B.2 C.3 D.78.已知復數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知某口袋中有3個白球和個黑球(),現(xiàn)從中隨機取出一球,再換回一個不同顏色的球(即若取出的是白球,則放回一個黑球;若取出的是黑球,則放回一個白球),記換好球后袋中白球的個數(shù)是.若,則=()A. B.1 C. D.210.拋物線的焦點為,準線為,,是拋物線上的兩個動點,且滿足,設線段的中點在上的投影為,則的最大值是()A. B. C. D.11.設函數(shù),當時,,則()A. B. C.1 D.12.已知三棱柱的所有棱長均相等,側棱平面,過作平面與平行,設平面與平面的交線為,記直線與直線所成銳角分別為,則這三個角的大小關系為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點在直線上,則的值等于______________.14.己知函數(shù),若關于的不等式對任意的恒成立,則實數(shù)的取值范圍是______.15.若函數(shù),則__________;__________.16.已知正項等比數(shù)列中,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質量關,合作社對村民制作的每件手工藝品都請3位行家進行質量把關,質量把關程序如下:(i)若一件手工藝品3位行家都認為質量過關,則該手工藝品質量為A級;(ii)若僅有1位行家認為質量不過關,再由另外2位行家進行第二次質量把關,若第二次質量把關這2位行家都認為質量過關,則該手工藝品質量為B級,若第二次質量把關這2位行家中有1位或2位認為質量不過關,則該手工藝品質量為C級;(iii)若有2位或3位行家認為質量不過關,則該手工藝品質量為D級.已知每一次質量把關中一件手工藝品被1位行家認為質量不過關的概率為,且各手工藝品質量是否過關相互獨立.(1)求一件手工藝品質量為B級的概率;(2)若一件手工藝品質量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.18.(12分)如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對角線AC與BD交于點O,VO⊥平面ABCD,E是棱VC的中點.(1)求證:VA∥平面BDE;(2)求證:平面VAC⊥平面BDE.19.(12分)某調(diào)查機構對某校學生做了一個是否同意生“二孩”抽樣調(diào)查,該調(diào)查機構從該校隨機抽查了100名不同性別的學生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計情況如下表:同意不同意合計男生a5女生40d合計100(1)求a,d的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認為是否同意父母生“二孩”與性別有關?請說明理由;(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有學生中,采用隨機抽樣的方法抽取4位學生進行長期跟蹤調(diào)查,記被抽取的4位學生中持“同意”態(tài)度的人數(shù)為X,求X的分布列及數(shù)學期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63520.(12分)已知A是拋物線E:y2=2px(p>0)上的一點,以點A和點B(2,0)為直徑兩端點的圓C交直線x=1于M,N兩點.(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點為P,Q,點G為PQ的中點,O為坐標原點,求直線OG斜率的取值范圍.21.(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當時,求函數(shù)的極值;(2)設函數(shù)的導函數(shù)為,求證:函數(shù)有且僅有一個零點.22.(10分)設,函數(shù),其中為自然對數(shù)的底數(shù).(1)設函數(shù).①若,試判斷函數(shù)與的圖像在區(qū)間上是否有交點;②求證:對任意的,直線都不是的切線;(2)設函數(shù),試判斷函數(shù)是否存在極小值,若存在,求出的取值范圍;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
通過圖表所給數(shù)據(jù),逐個選項驗證.【詳解】根據(jù)圖示數(shù)據(jù)可知選項A正確;對于選項B:,正確;對于選項C:,故C不正確;對于選項D:,正確.選C.【點睛】本題主要考查柱狀圖是識別和數(shù)據(jù)分析,題目較為簡單.2、A【解析】
根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點睛】本題考查向量的投影,屬于基礎題.3、D【解析】
根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點睛】本題考查了正弦定理解三角形,意在考查學生的計算能力.4、B【解析】
建立空間直角坐標系,利用向量法計算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側棱垂直于底面.設的中點為,建立空間直角坐標系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.5、C【解析】設這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質得,故選C6、D【解析】
根據(jù)向量垂直則數(shù)量積為零,結合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數(shù)量積的應用,涉及由向量垂直求參數(shù)值,屬基礎題.7、D【解析】
求出展開項中的常數(shù)項及含的項,問題得解?!驹斀狻空归_項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉化思想,考查計算能力,屬于基礎題。8、C【解析】分析:根據(jù)復數(shù)的運算,求得復數(shù)z,再利用復數(shù)的表示,即可得到復數(shù)對應的點,得到答案.詳解:由題意,復數(shù)z=2i1-i所以復數(shù)z在復平面內(nèi)對應的點的坐標為(-1,-1),位于復平面內(nèi)的第三象限,故選C.點睛:本題主要考查了復數(shù)的四則運算及復數(shù)的表示,其中根據(jù)復數(shù)的四則運算求解復數(shù)z是解答的關鍵,著重考查了推理與運算能力.9、B【解析】由題意或4,則,故選B.10、B【解析】
試題分析:設在直線上的投影分別是,則,,又是中點,所以,則,在中,所以,即,所以,故選B.考點:拋物線的性質.【名師點晴】在直線與拋物線的位置關系問題中,涉及到拋物線上的點到焦點的距離,焦點弦長,拋物線上的點到準線(或與準線平行的直線)的距離時,常??紤]用拋物線的定義進行問題的轉化.象本題弦的中點到準線的距離首先等于兩點到準線距離之和的一半,然后轉化為兩點到焦點的距離,從而與弦長之間可通過余弦定理建立關系.11、A【解析】
由降冪公式,兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后由正弦函數(shù)性質求得參數(shù)值.【詳解】,時,,,∴,由題意,∴.故選:A.【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質,掌握正弦函數(shù)性質是解題關鍵.12、B【解析】
利用圖形作出空間中兩直線所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設為的中點,為的中點,由圖可知過且與平行的平面為平面,所以直線即為直線,由題易知,的補角,分別為,設三棱柱的棱長為2,在中,,;在中,,;在中,,,.故選:B【點睛】本題主要考查了空間中兩直線所成角的計算,考查了學生的作圖,用圖能力,體現(xiàn)了學生直觀想象的核心素養(yǎng).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意可得,再由,即可得到結論.【詳解】由題意,得,又,解得,當時,則,此時;當時,則,此時,綜上,.故答案為:.【點睛】本題考查誘導公式和同角的三角函數(shù)的關系,考查計算能力,屬于基礎題.14、【解析】
首先判斷出函數(shù)為定義在上的奇函數(shù),且在定義域上單調(diào)遞增,由此不等式對任意的恒成立,可轉化為在上恒成立,進而建立不等式組,解出即可得到答案.【詳解】解:函數(shù)的定義域為,且,函數(shù)為奇函數(shù),當時,函數(shù),顯然此時函數(shù)為增函數(shù),函數(shù)為定義在上的增函數(shù),不等式即為,在上恒成立,,解得.故答案為.【點睛】本題考查函數(shù)單調(diào)性及奇偶性的綜合運用,考查不等式的恒成立問題,屬于常規(guī)題目.15、01【解析】
根據(jù)分段函數(shù)解析式,代入即可求解.【詳解】函數(shù),所以,.故答案為:0;1.【點睛】本題考查了分段函數(shù)求值的簡單應用,屬于基礎題.16、【解析】
利用等比數(shù)列的通項公式將已知兩式作商,可得,再利用等比數(shù)列的性質可得,再利用等比數(shù)列的通項公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點睛】本題考查了等比數(shù)列的通項公式以及等比中項,需熟記公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)①可能是2件;②詳見解析【解析】
(1)由一件手工藝品質量為B級的情形,并結合相互獨立事件的概率公式,列式計算即可;(2)①先求得一件手工藝品質量為D級的概率為,設10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數(shù),進而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數(shù);②分別求出一件手工藝品質量為A、B、C、D級的概率,進而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質量為B級的概率為.(2)①由題意可得一件手工藝品質量為D級的概率為,設10件手工藝品中不能外銷的手工藝品可能是件,則,則,其中,.由得,整數(shù)不存在,由得,所以當時,,即,由得,所以當時,,所以當時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由題意可知,一件手工藝品質量為A級的概率為,一件手工藝品質量為B級的概率為,一件手工藝品質量為C級的概率為,一件手工藝品質量為D級的概率為,所以X的分布列為:X900600300100P則期望為.【點睛】本題考查相互獨立事件的概率計算,考查離散型隨機變量的分布列及數(shù)學期望,考查學生的計算求解能力,屬于中檔題.18、(1)見解析(2)見解析【解析】
(1)連結OE,證明VA∥OE得到答案.(2)證明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到證明.【詳解】(1)連結OE.因為底面ABCD是菱形,所以O為AC的中點,又因為E是棱VC的中點,所以VA∥OE,又因為OE?平面BDE,VA?平面BDE,所以VA∥平面BDE;(2)因為VO⊥平面ABCD,又BD?平面ABCD,所以VO⊥BD,因為底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC?平面VAC,所以BD⊥平面VAC.又因為BD?平面BDE,所以平面VAC⊥平面BDE.【點睛】本題考查了線面平行,面面垂直,意在考查學生的推斷能力和空間想象能力.19、(1),有97.5%的把握認為是否同意父母生“二孩”與“性別”有關;(2)詳見解析.【解析】
(1)根據(jù)表格及同意父母生“二孩”占60%可求出,,根據(jù)公式計算結果即可確定有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)由題意可知X服從二項分布,利用公式計算概率及期望即可.【詳解】(1)因為100人中同意父母生“二孩”占60%,所以,文(2)由列聯(lián)表可得而所以有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)①由題知持“同意”態(tài)度的學生的頻率為,即從學生中任意抽取到一名持“同意”態(tài)度的學生的概率為.由于總體容量很大,故X服從二項分布,即從而X的分布列為X01234X的數(shù)學期望為【點睛】本題主要考查了相關性檢驗、二項分布,屬于中檔題.20、(1).(2)【解析】
(1)設A的坐標為A(x0,y0),由題意可得圓心C的坐標,求出C到直線x=1的距離.由半個弦長,圓心到直線的距離及半徑構成直角三角形可得p的值,進而求出拋物線的方程;(2)將拋物線的方程與圓的方程聯(lián)立可得韋達定理,進而求出中點G的坐標,再求出直線OG的斜率的表達式,換元可得斜率的取值范圍.【詳解】(1)設A(x0,y0)且y02=2px0,則圓心C(),圓C的直徑|AB|,圓心C到直線x=1的距離d=|1|=||,因為|MN|=2,所以()2+d2=()2,即1,y02=2px0,整理可得(2p﹣4)x0=0,所以p=2,所以拋物線的方程為:y2=4x;(2)聯(lián)立拋物線與圓的方程整理可得x2﹣2(5﹣p)x+16=0,△>0,設P(x1,y1),Q(x2,y2),則x1+x2=2(5﹣p),x1x2=16,所以中點G的橫坐標xG=5﹣p,yG(),所以kOG(0<P<1),令t=5﹣p(t∈(4,5)),則kOG(),解得0<kOG,所以直線OG斜率的取值范圍(0,).【點睛】本題考查拋物線的性質及直線與拋物線的綜合,換元方法的應用,屬于中檔題.21、見解析【解析】
(1)當時,函數(shù),其定義域為,則,設,,易知函數(shù)在上單調(diào)遞增,且,所以當時,,即;當時,,即,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)在處取得極小值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海綿城市方案行業(yè)深度調(diào)研及發(fā)展項目商業(yè)計劃書
- 注冊藥劑師備考行業(yè)深度調(diào)研及發(fā)展項目商業(yè)計劃書
- 武術表演團隊行業(yè)深度調(diào)研及發(fā)展項目商業(yè)計劃書-20250409-112742
- 天文觀測俱樂部行業(yè)深度調(diào)研及發(fā)展項目商業(yè)計劃書
- 包子美食節(jié)參與行業(yè)跨境出海項目商業(yè)計劃書
- 石化產(chǎn)業(yè)基地項目可行性研究報告
- 教育強國背景下大學生就業(yè)能力結構及培養(yǎng)的策略及實施路徑
- 環(huán)烯烴共聚物項目可行性研究報告(參考范文)
- 低空經(jīng)濟產(chǎn)業(yè)園市場營銷管理方案
- 建筑工程物資采購計劃
- 茶籽油批發(fā)協(xié)議書
- 2025屆柳州市重點中學八年級物理第二學期期末考試模擬試題含解析
- 《髖關節(jié)鏡手術患者》課件
- 浙江開放大學2025年《社會保障學》形考任務3答案
- 2025年浙江省寧波市一??茖W試卷
- 2024三相智能電能表技術規(guī)范
- 2025年廣東省數(shù)學九年級中考三輪復習壓軸題:相似與幾何綜合練習
- 2024-2025學年人教版八年級下冊期末數(shù)學質量檢測試卷(含答案)
- 江蘇省南通市合作盟校2025年高考化學四模試卷含解析
- 新版GSP《醫(yī)療器械經(jīng)營質量管理規(guī)范》培訓試題
- 新版2025心肺復蘇術指南
評論
0/150
提交評論