




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省常州市田家炳中學(xué)2025屆高三第二次調(diào)研數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點為,則不可能為()A. B. C. D.2.?dāng)?shù)列滿足,且,,則()A. B.9 C. D.73.若,則“”是“的展開式中項的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件4.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,5.曲線在點處的切線方程為,則()A. B. C.4 D.86.已知命題,,則是()A., B.,.C., D.,.7.設(shè)函數(shù),則,的大致圖象大致是的()A. B.C. D.8.若的展開式中的系數(shù)為-45,則實數(shù)的值為()A. B.2 C. D.9.已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為()A.1 B. C.2 D.10.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.11.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.2512.已知函數(shù)()的最小值為0,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),(其中e為自然對數(shù)的底數(shù)),若關(guān)于x的方程恰有5個相異的實根,則實數(shù)a的取值范圍為________.14.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎.在比賽結(jié)果揭曉之前,四人的猜測如下表,其中“√”表示猜測某人獲獎,“×”表示猜測某人未獲獎,而“○”則表示對某人是否獲獎未發(fā)表意見.已知四個人中有且只有兩個人的猜測是正確的,那么兩名獲獎?wù)呤莀______.甲獲獎乙獲獎丙獲獎丁獲獎甲的猜測√××√乙的猜測×○○√丙的猜測×√×√丁的猜測○○√×15.設(shè)Sn為數(shù)列{an}的前n項和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.16.(5分)已知為實數(shù),向量,,且,則____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開了對這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數(shù)量(單位:萬人)之間的關(guān)系如下表:日期1234567全國累計報告確診病例數(shù)量(萬人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預(yù)測2月10日全國累計報告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距的最小二乘估計公式分別為:,.18.(12分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設(shè),,(單位:百米).(1)分別求,關(guān)于x的函數(shù)關(guān)系式;(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.19.(12分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點.求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.20.(12分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點.(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.21.(12分)在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當(dāng)?shù)拿娣e取得最大值時,求AD的長.22.(10分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎?wù)邤S各面標(biāo)有點數(shù)的正方體骰子次,若擲得點數(shù)大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結(jié)束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎?wù)邚南渲腥我饷鰝€球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數(shù)學(xué)期望不超過元,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
依題意,設(shè),由,得,再一一驗證.【詳解】設(shè),因為,所以,經(jīng)驗證不滿足,故選:D.【點睛】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.2、A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點睛】本題主要考查了等差數(shù)列的性質(zhì)和通項公式的求法,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.3、B【解析】
求得的二項展開式的通項為,令時,可得項的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項展開式的通項為,令,即,則項的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.4、D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當(dāng)過點時,直線在軸上的截距最大,即,當(dāng)過點原點時,直線在軸上的截距最小,即,故AB錯誤;
設(shè),則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對目標(biāo)函數(shù)幾何意義的認(rèn)識,屬于基礎(chǔ)題.5、B【解析】
求函數(shù)導(dǎo)數(shù),利用切線斜率求出,根據(jù)切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于中檔題.6、B【解析】
根據(jù)全稱命題的否定為特稱命題,得到結(jié)果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.7、B【解析】
采用排除法:通過判斷函數(shù)的奇偶性排除選項A;通過判斷特殊點的函數(shù)值符號排除選項D和選項C即可求解.【詳解】對于選項A:由題意知,函數(shù)的定義域為,其關(guān)于原點對稱,因為,所以函數(shù)為奇函數(shù),其圖象關(guān)于原點對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B【點睛】本題考查利用函數(shù)的奇偶性和特殊點函數(shù)值符號判斷函數(shù)圖象;考查運算求解能力和邏輯推理能力;選取合適的特殊點并判斷其函數(shù)值符號是求解本題的關(guān)鍵;屬于中檔題、常考題型.8、D【解析】
將多項式的乘法式展開,結(jié)合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數(shù)為,∴解得.故選:D.【點睛】本題考查了二項式定理展開式通項的簡單應(yīng)用,指定項系數(shù)的求法,屬于基礎(chǔ)題.9、B【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當(dāng)時,x在點B處取得最大值,即,得;當(dāng)時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標(biāo)函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.10、A【解析】
根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個零點,即可對選項逐個驗證即可得出.【詳解】首先對4個選項進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個選項,對其在上的零點個數(shù)進(jìn)行判斷,在上無零點,不符合題意,排除D;然后,對剩下的2個選項,進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點睛】本題主要考查圖象的識別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.11、D【解析】
由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設(shè)首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應(yīng)用,考查求前n項和的最值問題,同時還考查了余弦定理的應(yīng)用.12、C【解析】
設(shè),計算可得,再結(jié)合圖像即可求出答案.【詳解】設(shè),則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結(jié)合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數(shù)的圖像與性質(zhì),考查轉(zhuǎn)化思想,考查數(shù)形結(jié)合思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出圖象,求出方程的根,分類討論的正負(fù),數(shù)形結(jié)合即可.【詳解】當(dāng)時,令,解得,所以當(dāng)時,,則單調(diào)遞增,當(dāng)時,,則單調(diào)遞減,當(dāng)時,單調(diào)遞減,且,作出函數(shù)的圖象如圖:(1)當(dāng)時,方程整理得,只有2個根,不滿足條件;(2)若,則當(dāng)時,方程整理得,則,,此時各有1解,故當(dāng)時,方程整理得,有1解同時有2解,即需,,因為(2),故此時滿足題意;或有2解同時有1解,則需,由(1)可知不成立;或有3解同時有0解,根據(jù)圖象不存在此種情況,或有0解同時有3解,則,解得,故,(3)若,顯然當(dāng)時,和均無解,當(dāng)時,和無解,不符合題意.綜上:的范圍是,故答案為:,【點睛】本題主要考查了函數(shù)零點與函數(shù)圖象的關(guān)系,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.14、乙、丁【解析】
本題首先可根據(jù)題意中的“四個人中有且只有兩個人的猜測是正確的”將題目分為四種情況,然后對四種情況依次進(jìn)行分析,觀察四人所猜測的結(jié)果是否沖突,最后即可得出結(jié)果.【詳解】從表中可知,若甲猜測正確,則乙,丙,丁猜測錯誤,與題意不符,故甲猜測錯誤;若乙猜測正確,則依題意丙猜測無法確定正誤,丁猜測錯誤;若丙猜測正確,則丁猜測錯誤;綜上只有乙,丙猜測不矛盾,依題意乙,丙猜測是正確的,從而得出乙,丁獲獎.所以本題答案為乙、丁.【點睛】本題是一個簡單的合情推理題,能否根據(jù)“四個人中有且只有兩個人的猜測是正確的”將題目所給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關(guān)鍵,考查推理能力,是簡單題.15、55【解析】
由求出.由,可得,兩式相減,可得數(shù)列是以1為首項,1為公差的等差數(shù)列,即求.【詳解】由題意,當(dāng)n=1時,,當(dāng)時,由,可得,兩式相減,可得,整理得,,即,∴數(shù)列是以1為首項,1為公差的等差數(shù)列,.故答案為:55.【點睛】本題考查求數(shù)列的前項和,屬于基礎(chǔ)題.16、5【解析】
由,,且,得,解得,則,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)可以用線性回歸模型擬合與的關(guān)系;(2),預(yù)測2月10日全國累計報告確診病例數(shù)約有4.5萬人.【解析】
(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說明它們的線性相關(guān)性越高來判斷.(2)由(1)的相關(guān)數(shù)據(jù),求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數(shù)據(jù)得,,,所以,,所以.因為與的相關(guān)近似為0.99,說明它們的線性相關(guān)性相當(dāng)高,從而可以用線性回歸模型擬合與的關(guān)系.(2)由(1)得,,,所以,關(guān)于的回歸方程為:,2月10日,即代入回歸方程得:.所以預(yù)測2月10日全國累計報告確診病例數(shù)約有4.5萬人.【點睛】本題主要考查線性回歸分析和回歸方程的求解及應(yīng)用,還考查了運算求解的能力,屬于中檔題.18、(1),.,.(2)當(dāng)百米時,兩條直道的長度之和取得最小值百米.【解析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式;在和中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.(2)由(1)和基本不等式,計算即得.【詳解】解:(1),是邊長為3的等邊三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道長度關(guān)于x的函數(shù)關(guān)系式為,.在和中,由余弦定理,得①②因為M為的中點,所以.由①②,得,所以,所以.所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.法2:因為在中,,所以.所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.在中,因為M為的中點,所以.所以.所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.(2)由(1)得,兩條直道的長度之和為(當(dāng)且僅當(dāng)即時取“”).故當(dāng)百米時,兩條直道的長度之和取得最小值百米.【點睛】本題考查了余弦定理和基本不等式,第一問也可以利用三角形中的向量關(guān)系進(jìn)行求解,屬于中檔題.19、(1)詳見解析;(2)詳見解析.【解析】
(1)利用平行四邊形的方法,證明平面.(2)通過證明平面,由此證得.【詳解】(1)設(shè)是中點,連接,由于是中點,所以且,而且,所以與平行且相等,所以四邊形是平行四邊形,所以,由于平面,平面,所以平面.(2)連接,由于直三棱柱中,而,,所以平面,所以,由于,所以.由于四邊形是矩形且,所以四邊形是正方形,所以,由于,所以平面,所以.【點睛】本小題主要考查線面平行的證明,考查線面垂直的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)見解析;(2).【解析】試題分析:(1)根據(jù)平面有,利用勾股定理可證明,故平面,再由面面垂直的判定定理可證得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DBJ50-145-2012 城鎮(zhèn)道路路基設(shè)計規(guī)范
- 辦公自動化運維方案
- (高清版)DB54∕T 0467-2025 保護(hù)地蘆筍栽培技術(shù)規(guī)程
- 保險理賠員考試題庫
- 安全生產(chǎn)統(tǒng)計分析練習(xí)試卷1(共141題)
- 浙江省臺州市2024-2025學(xué)年高二下學(xué)期6月期末質(zhì)量評估政治試卷(含答案)
- 湖北省八校聯(lián)考2024-2025學(xué)年高一下學(xué)期6月期末生物試卷(含答案)
- 山東美術(shù)館組織活動方案
- 居家安全游園活動方案
- 小門店活動策劃方案
- 國家開放大學(xué)《人文英語4 》期末機(jī)考題庫
- 2025年全國I卷作文講評
- 肺結(jié)核競賽試題及答案
- 車位租賃備案合同
- 2025-2030中國金銀花行業(yè)消費需求趨勢及未來前景銷售趨勢研究報告
- 2025年四川省成都市外國語學(xué)校七年級英語第二學(xué)期期末教學(xué)質(zhì)量檢測試題含答案
- 婚姻存續(xù)期協(xié)議書
- 森林草原防火 無人機(jī)巡查技術(shù)規(guī)范 征求意見稿
- 2025年中考英語考前沖刺卷(廣東卷)(解析版)
- 矯正牙齒合同協(xié)議書模板
- 信息安全設(shè)備性能評測-洞察闡釋
評論
0/150
提交評論