新高考數(shù)學(xué)二輪復(fù)習(xí)強化練習(xí)思想03 數(shù)形結(jié)合思想(練)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強化練習(xí)思想03 數(shù)形結(jié)合思想(練)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強化練習(xí)思想03 數(shù)形結(jié)合思想(練)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強化練習(xí)思想03 數(shù)形結(jié)合思想(練)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強化練習(xí)思想03 數(shù)形結(jié)合思想(練)(解析版)_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第三篇思想方法篇思想03數(shù)形結(jié)合思想(練)一、單選題1.(2023秋·天津·高三統(tǒng)考期末)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象大致為(

)A. B.C. D.【答案】D【分析】利用函數(shù)的奇偶性,排除兩個選項,再利用SKIPIF1<0得解.【詳解】SKIPIF1<0,令SKIPIF1<0SKIPIF1<0,則SKIPIF1<0是偶函數(shù),選項A,B是不正確的;又因為SKIPIF1<0,所以C不正確.故選:D2.(2023·河南·校聯(lián)考模擬預(yù)測)若函數(shù)SKIPIF1<0的部分圖象如圖,則SKIPIF1<0的解析式可能是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】對于A,根據(jù)SKIPIF1<0可知A不正確;對于C,利用導(dǎo)數(shù)可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,可知C不正確;對于D,根據(jù)SKIPIF1<0為奇函數(shù),可知D不正確.【詳解】對于A,因為SKIPIF1<0,由圖可知,A不正確;對于C,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,因為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上恒成立,所以當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以排除C.對于D,SKIPIF1<0的定義域為SKIPIF1<0,關(guān)于原點對稱,SKIPIF1<0,SKIPIF1<0為奇函數(shù),其圖象關(guān)于原點對稱,由圖可知,D不正確.故選:B.3.(河南省top20名校聯(lián)盟2023屆高三下學(xué)期2月聯(lián)考理科數(shù)學(xué)試題)已知SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】分析可得SKIPIF1<0,設(shè)SKIPIF1<0,其中SKIPIF1<0,分析函數(shù)SKIPIF1<0的單調(diào)性,可得出結(jié)論.【詳解】解:SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,其中SKIPIF1<0,因為函數(shù)SKIPIF1<0、SKIPIF1<0在SKIPIF1<0上均為增函數(shù),則函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,則SKIPIF1<0,即SKIPIF1<0,A對B錯,其它選項無法判斷.故選:A.4.(2023·陜西西安·統(tǒng)考一模)已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】求出SKIPIF1<0的解析式,在同一坐標(biāo)系中作SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象,得到SKIPIF1<0,借助SKIPIF1<0的單調(diào)性進行判斷即可.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,在R上單調(diào)遞減,在同一坐標(biāo)系中作SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象,如圖,所以SKIPIF1<0,故SKIPIF1<0.故選:B.5.(2023春·青海西寧·高三統(tǒng)考開學(xué)考試)已知橢圓SKIPIF1<0的左右焦點分別為SKIPIF1<0,SKIPIF1<0,P是橢圓上任意一點,過SKIPIF1<0作SKIPIF1<0的外角平分線的垂線,垂足為Q,則Q與焦點間的最短距離為(

)A.2 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)題意推出所以SKIPIF1<0,即可確定Q的軌跡是以O(shè)為圓心,半徑為4的圓,結(jié)合圓以及橢圓的幾何性質(zhì)即可求得答案.【詳解】由題意橢圓SKIPIF1<0可知SKIPIF1<0,如圖所示,因為SKIPIF1<0是SKIPIF1<0的外角平分線,SKIPIF1<0,設(shè)SKIPIF1<0交SKIPIF1<0的延長線于點E,則SKIPIF1<0,所以Q是線段SKIPIF1<0的中點,且SKIPIF1<0.由橢圓定義可知SKIPIF1<0.連接SKIPIF1<0,因為O為SKIPIF1<0的中點,所以SKIPIF1<0,所以Q的軌跡是以O(shè)為圓心,半徑為4的圓,所以當(dāng)Q與橢圓的長軸的端點重合時到橢圓相應(yīng)的焦點的距離最短,故最短距離為SKIPIF1<0,故選:B.6.(2023·全國·模擬預(yù)測)定義在R上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0.設(shè)直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象相交于點SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0SKIPIF1<0(

).A.18 B.20 C.22 D.24【答案】C【分析】根據(jù)抽象函數(shù)SKIPIF1<0的奇偶性與對稱性可得函數(shù)SKIPIF1<0的周期為SKIPIF1<0,且SKIPIF1<0得圖象關(guān)于SKIPIF1<0對稱;作出函數(shù)SKIPIF1<0的圖象和直線SKIPIF1<0,研究它們的交點情況,即可得結(jié)果.【詳解】因為SKIPIF1<0為定義在R上的奇函數(shù),得SKIPIF1<0.由SKIPIF1<0,得函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即4為函數(shù)SKIPIF1<0的一個周期.又SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0,所以函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱.在同一平面直角坐標(biāo)系內(nèi)作出SKIPIF1<0的圖象與直線SKIPIF1<0,如圖所示,由圖可知它們共有11個不同的交點,且除交點SKIPIF1<0外,其余10個交點關(guān)于點SKIPIF1<0中心對稱,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:C.7.(2023春·北京海淀·高三清華附中校考開學(xué)考試)在平面直角坐標(biāo)系中,SKIPIF1<0為原點,已知SKIPIF1<0,設(shè)動點SKIPIF1<0滿足SKIPIF1<0,動點SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】C【分析】根據(jù)題意可得點SKIPIF1<0在圓SKIPIF1<0內(nèi)部和圓周上,點SKIPIF1<0的軌跡是以SKIPIF1<0的直徑的圓,延長SKIPIF1<0交圓SKIPIF1<0于點SKIPIF1<0,設(shè)SKIPIF1<0的中點為SKIPIF1<0,SKIPIF1<0的中點為SKIPIF1<0,則SKIPIF1<0,易得SKIPIF1<0,再結(jié)合平面圖形的性質(zhì)和基本不等式即可得出答案.【詳解】因為SKIPIF1<0,設(shè)動點SKIPIF1<0滿足SKIPIF1<0,所以點SKIPIF1<0在圓SKIPIF1<0內(nèi)部和圓周上,因為動點SKIPIF1<0滿足SKIPIF1<0,所以點SKIPIF1<0的軌跡是以SKIPIF1<0的直徑的圓,如圖,延長SKIPIF1<0交圓SKIPIF1<0于點SKIPIF1<0,設(shè)SKIPIF1<0的中點為SKIPIF1<0,SKIPIF1<0的中點為SKIPIF1<0,則SKIPIF1<0,若點SKIPIF1<0在圓上時,SKIPIF1<0兩點重合,SKIPIF1<0兩點重合,若點SKIPIF1<0在圓內(nèi)時,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)點SKIPIF1<0在圓上時,取等號,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0三點共線時,取等號,因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0重合時,取等號,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,取等號,此時SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0三點共線且點SKIPIF1<0在圓SKIPIF1<0與SKIPIF1<0軸的交點處時,取等號,所以SKIPIF1<0的最大值為SKIPIF1<0.故選:C.8.(2023·江蘇連云港·統(tǒng)考模擬預(yù)測)已知圓錐內(nèi)切球(與圓錐側(cè)面、底面均相切的球)的半徑為2,當(dāng)該圓錐的表面積最小時,其外接球的表面積為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】作出圖形,設(shè)SKIPIF1<0,SKIPIF1<0,由三角形相似得到SKIPIF1<0,得到圓錐的表面積為SKIPIF1<0,令SKIPIF1<0,由導(dǎo)函數(shù)得到當(dāng)SKIPIF1<0時,圓錐的表面積取得最小值,進而得到此時SKIPIF1<0與SKIPIF1<0,作出圓錐的外接球,設(shè)外接球半徑為SKIPIF1<0,由勾股定理列出方程,求出外接球半徑和表面積.【詳解】設(shè)圓錐的頂點為SKIPIF1<0,底面圓的圓心為SKIPIF1<0,內(nèi)切球圓心為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0⊥SKIPIF1<0,SKIPIF1<0⊥SKIPIF1<0,所以SKIPIF1<0∽SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,所以圓錐的表面積為SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0在SKIPIF1<0時取得最小值,SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0,設(shè)圓錐的外接球球心為SKIPIF1<0,連接SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,由勾股定理得:SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,故其外接球的表面積為SKIPIF1<0.故選:A【點睛】解決與球有關(guān)的內(nèi)切或外接的問題時,解題的關(guān)鍵是確定球心的位置.對于外切的問題要注意球心到各個面的距離相等且都為球半徑;對于球的內(nèi)接幾何體的問題,注意球心到各個頂點的距離相等,解題時要構(gòu)造出由球心到截面圓的垂線段、小圓的半徑和球半徑組成的直角三角形,利用勾股定理求得球的半徑.二、多選題9.(2023·云南·高三云南師大附中校考階段練習(xí))已知函數(shù)SKIPIF1<0,若關(guān)于x的方程SKIPIF1<0恰有兩個互異的實數(shù)解,則實數(shù)a的值可以是(

)A.0 B.1 C.SKIPIF1<0 D.2【答案】BCD【分析】首先根據(jù)題意畫出函數(shù)SKIPIF1<0的圖象,結(jié)合圖象可知:當(dāng)SKIPIF1<0時,直線SKIPIF1<0與SKIPIF1<0的圖象有2個交點,當(dāng)直線與曲線SKIPIF1<0相切在第一象限時,有2個交點,即可得到答案.【詳解】函數(shù)SKIPIF1<0的圖象,如圖所示:由題意知,直線SKIPIF1<0與SKIPIF1<0的圖象有2個交點.當(dāng)直線SKIPIF1<0過點SKIPIF1<0時,SKIPIF1<0,當(dāng)直線SKIPIF1<0過點SKIPIF1<0時,SKIPIF1<0.結(jié)合圖象如圖可知,當(dāng)SKIPIF1<0時,直線SKIPIF1<0與SKIPIF1<0的圖象有2個交點,如圖所示:又當(dāng)直線SKIPIF1<0與曲線SKIPIF1<0相切在第一象限時,直線SKIPIF1<0與SKIPIF1<0的圖象也有2個交點,如圖所示:SKIPIF1<0,化簡可得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,又由圖可知SKIPIF1<0,所以SKIPIF1<0,此時切點的橫坐標(biāo)為2符合.綜上,實數(shù)a的取值范圍是SKIPIF1<0.故選:BCD.10.(2023春·安徽·高三校聯(lián)考開學(xué)考試)如圖,在正方體SKIPIF1<0中,E為棱SKIPIF1<0上的一個動點,F(xiàn)為棱SKIPIF1<0上的一個動點,則直線SKIPIF1<0與平面EFB所成的角可能是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AB【分析】建立空間直角坐標(biāo)系,利用空間向量、直線與平面夾角的計算公式進行求解判斷.【詳解】以D為坐標(biāo)原點,DA,DC,SKIPIF1<0所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,如圖所示,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,其中m,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面EFB的法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0.設(shè)直線SKIPIF1<0與平面EFB所成的角為θ,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,該式隨著m的增大而增大,隨著n的增大而減小,當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0,所以SKIPIF1<0,綜上,SKIPIF1<0的取值范圍是SKIPIF1<0,所以SKIPIF1<0,故CD錯誤.故選:AB.11.(2023春·山西晉城·高三??茧A段練習(xí))如圖所示,在邊長為3的等邊三角形SKIPIF1<0中,SKIPIF1<0,且點SKIPIF1<0在以SKIPIF1<0的中點SKIPIF1<0為圓心,SKIPIF1<0為半徑的半圓上,若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0存在最大值 D.SKIPIF1<0的最大值為SKIPIF1<0【答案】AC【分析】對于AB,將SKIPIF1<0分別用SKIPIF1<0表示,再結(jié)合數(shù)量積的運算律即可判斷;對于CD,以點SKIPIF1<0為原點建立平面直角坐標(biāo)系,設(shè)SKIPIF1<0,根據(jù)平面向量的坐標(biāo)表示及坐標(biāo)運算即可判斷.【詳解】對于A,因為SKIPIF1<0,且點SKIPIF1<0在以SKIPIF1<0的中點SKIPIF1<0為圓心,SKIPIF1<0為半徑的半圓上,所以SKIPIF1<0,則SKIPIF1<0,故A正確;SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,故B錯誤;如圖,以點SKIPIF1<0為原點建立平面直角坐標(biāo)系,則SKIPIF1<0,因為點SKIPIF1<0在以SKIPIF1<0的中點SKIPIF1<0為圓心,SKIPIF1<0為半徑的半圓上,所以點SKIPIF1<0的軌跡方程為SKIPIF1<0,且在SKIPIF1<0軸的下半部分,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0,故C正確;因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0,故D錯誤.故選:AC.12.(2023·吉林·統(tǒng)考二模)如圖,函數(shù)SKIPIF1<0的圖象稱為牛頓三叉戟曲線,函數(shù)SKIPIF1<0滿足SKIPIF1<0有3個零點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0D.SKIPIF1<0【答案】ACD【分析】對于選項A:根據(jù)導(dǎo)數(shù)得出其單調(diào)性,則根據(jù)零點的定義結(jié)合圖像得出SKIPIF1<0時,SKIPIF1<0才有三個零點;對于選項B:根據(jù)解析式得出當(dāng)SKIPIF1<0時,SKIPIF1<0,即可結(jié)合已知得出SKIPIF1<0根據(jù)單調(diào)性得出答案;對于選項C:令SKIPIF1<0,SKIPIF1<0,根據(jù)導(dǎo)數(shù)得出其單調(diào)性與最值,即可得出SKIPIF1<0,即可結(jié)合已知得出SKIPIF1<0,即可根據(jù)單調(diào)性得出答案;對于選項D:根據(jù)已知得出SKIPIF1<0,代入解析式轉(zhuǎn)化得出SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即可根據(jù)導(dǎo)數(shù)求出其最值,即可得出答案.【詳解】SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0;SKIPIF1<0的增區(qū)間為:SKIPIF1<0,減區(qū)間為:SKIPIF1<0與SKIPIF1<0,對于A選項:SKIPIF1<0且SKIPIF1<0有三個零點,SKIPIF1<0,即A選項正確;對于B選項:當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,即SKIPIF1<0,即B選項錯誤;對于C選項:令SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上遞減,即SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即SKIPIF1<0,即C選項正確;對于D選項:SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0,故SKIPIF1<0,故D選項正確.故選:ACD.三、填空題13.(2023·河南鄭州·統(tǒng)考一模)設(shè)函數(shù)SKIPIF1<0則滿足SKIPIF1<0的x的取值范圍是______.【答案】SKIPIF1<0【分析】作出SKIPIF1<0圖象,由數(shù)形結(jié)合結(jié)合函數(shù)單調(diào)性列不等式求解即可.【詳解】函數(shù)SKIPIF1<0的圖象如圖所示,滿足SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0.解得SKIPIF1<0.故答案為:SKIPIF1<0.14.(2023春·江蘇蘇州·高一常熟中學(xué)校考開學(xué)考試)已知函數(shù)SKIPIF1<0,(1)當(dāng)SKIPIF1<0時,則實數(shù)a,b之間的大小關(guān)系是___________;(2)若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍是___________.【答案】

SKIPIF1<0

SKIPIF1<0【分析】(1)利用對數(shù)函數(shù)的單調(diào)性即可判斷;(2)畫出函數(shù)圖象,整理可得SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,由對勾函數(shù)的性質(zhì)求出SKIPIF1<0的取值范圍.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.作出函數(shù)圖象如圖,由圖可知,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0令SKIPIF1<0,由對勾函數(shù)的性質(zhì)得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.15.(福建省福州市八縣(市)2022-2023學(xué)年高二上學(xué)期期末聯(lián)考數(shù)學(xué)試題)如圖,已知一酒杯的內(nèi)壁是由拋物線SKIPIF1<0旋轉(zhuǎn)形成的拋物面,當(dāng)放入一個半徑為1的玻璃球時,玻璃球可碰到酒杯底部的A點,當(dāng)放入一個半徑為2的玻璃球時,玻璃球不能碰到酒杯底部的A點,則p的取值范圍為______

.【答案】SKIPIF1<0【分析】根據(jù)題意分析可得:圓SKIPIF1<0與SKIPIF1<0只有一個交點SKIPIF1<0,圓SKIPIF1<0與SKIPIF1<0只有兩個交點,分別聯(lián)立方程分析運算.【詳解】如圖,由題意可得:圓SKIPIF1<0與SKIPIF1<0只有一個交點SKIPIF1<0,聯(lián)立方程SKIPIF1<0,消去x得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,圓SKIPIF1<0與SKIPIF1<0只有兩個交點,聯(lián)立方程SKIPIF1<0,消去x得SKIPIF1<0,∵SKIPIF1<0,可得若SKIPIF1<0有根,則兩根同號,根據(jù)題意可知:SKIPIF1<0有且僅有一個正根,故SKIPIF1<0,則可得SKIPIF1<0,解得SKIPIF1<0,綜上所述:SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】方法點睛:在處理實際問題時,體現(xiàn)數(shù)形結(jié)合的思想,將圖形轉(zhuǎn)化為代數(shù),這樣交點轉(zhuǎn)化為方程的根或函數(shù)的零點,利用方程或函數(shù)的知識分析求解.16.(2023·河南·校聯(lián)考模擬預(yù)測)在四面體ABCD中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若四面體ABCD的體積為SKIPIF1<0,則四面體ABCD外接球的表面積的最小值為______.【答案】SKIPIF1<0【分析】證明四面體ABCD外接球的球心O是AD的中點,連接OB,OC,設(shè)SKIPIF1<0的中心H.連接OH,AH,設(shè)SKIPIF1<0,SKIPIF1<0,根據(jù)四面體的體積得到SKIPIF1<0,設(shè)四面體ABCD外接球O的半徑為R,求出SKIPIF1<0SKIPIF1<0,再利用導(dǎo)數(shù)求SKIPIF1<0的最值即得解.【詳解】由SKIPIF1<0,SKIPIF1<0知,四面體ABCD外接球的球心O是AD的中點,連接OB,OC,則SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0為等邊三角形,所以SKIPIF1<0的外接圓的圓心為SKIPIF1<0的中心H.連接OH,AH,則SKIPIF1<0平面ABC.設(shè)SKIPIF1<0,SKIPIF1<0,則點D到平面ABC的距離為2h,所以四面體ABCD的體積為SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.設(shè)四面體ABCD外接球O的半徑為R,則SKIPIF1<0,即SKIPIF1<0SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0處取得極小值,即最小值,所以當(dāng)SKIPIF1<0時,R取得最小值,為SKIPIF1<0,所以四面體ABCD外接球O的表面積的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】關(guān)鍵點睛:解答本題的關(guān)鍵有兩個,其一是能準(zhǔn)確求出四面體ABCD外接球的表面積的解析式,其二是能利用導(dǎo)數(shù)求解函數(shù)的最值.四、解答題17.(2023·高三課時練習(xí))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間,并指出其增減性;(2)設(shè)集合SKIPIF1<0{SKIPIF1<0使方程SKIPIF1<0有四個不相等的實根},求M.【答案】(1)SKIPIF1<0的嚴(yán)格增區(qū)間為SKIPIF1<0和SKIPIF1<0,嚴(yán)格減區(qū)間為SKIPIF1<0和SKIPIF1<0(2)SKIPIF1<0【分析】(1)討論SKIPIF1<0的正負(fù),去掉絕對值,化簡SKIPIF1<0的解析式,將SKIPIF1<0的圖象位于SKIPIF1<0軸下方的圖象翻到SKIPIF1<0軸上方得到SKIPIF1<0的圖象.(2)方程SKIPIF1<0有四個不相等的實根等價于函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0有四個不同的交點,觀察圖象得SKIPIF1<0的范圍.【詳解】(1)由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0作出SKIPIF1<0的圖象如圖所示.由圖象可知,SKIPIF1<0的嚴(yán)格增區(qū)間為SKIPIF1<0和SKIPIF1<0,嚴(yán)格減區(qū)間為SKIPIF1<0和SKIPIF1<0.(2)方程SKIPIF1<0有四個不相等的實根等價于函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0有四個不同的交點,易知f(2)=1,由圖知SKIPIF1<0,所以SKIPIF1<0.18.(2022·河北·模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)畫出SKIPIF1<0和SKIPIF1<0的圖象;(2)當(dāng)SKIPIF1<0時,若SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)畫圖見解析(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【分析】(1)由分段函數(shù)的圖象畫法可得;(2)考慮SKIPIF1<0的圖象經(jīng)過SKIPIF1<0,SKIPIF1<0,結(jié)合圖象平移可得結(jié)論.【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0.故SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0的圖象如圖:(2)根據(jù)圖象可知,SKIPIF1<0可以看成SKIPIF1<0經(jīng)過左右平移得到的,當(dāng)SKIPIF1<0的圖象左支經(jīng)過點SKIPIF1<0,則有SKIPIF1<0恒成立,可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,即SKIPIF1<0右平移一個單位,SKIPIF1<0不恒成立;當(dāng)SKIPIF1<0時,即SKIPIF1<0右平移至少三個單位,SKIPIF1<0恒成立,當(dāng)SKIPIF1<0的圖象右支經(jīng)過點SKIPIF1<0,則有SKIPIF1<0恒成立,可得SKIPIF1<0,解得SKIPIF1<0或2,當(dāng)SKIPIF1<0時,即SKIPIF1<0不平移,SKIPIF1<0不恒成立;當(dāng)SKIPIF1<0時,即SKIPIF1<0左平移至少兩個單位,SKIPIF1<0恒成立,故SKIPIF1<0的取值范圍是SKIPIF1<0.19.(山東省日照市2023屆高三一??荚嚁?shù)學(xué)試題)已知拋物線SKIPIF1<0:SKIPIF1<0的焦點為SKIPIF1<0為SKIPIF1<0上的動點,SKIPIF1<0垂直于動直線SKIPIF1<0,垂足為SKIPIF1<0,當(dāng)SKIPIF1<0為等邊三角形時,其面積為SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)設(shè)SKIPIF1<0為原點,過點SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0相切,且與橢圓SKIPIF1<0交于SKIPIF1<0兩點,直線SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,試問:是否存在SKIPIF1<0,使得SKIPIF1<0?若存在,求SKIPIF1<0的值;若不存在,請說明理由.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)根據(jù)正三角形得三角形的邊長,再根據(jù)拋物線的定義進行求解;(2)設(shè)SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,由導(dǎo)數(shù)的幾何意義可得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,中點SKIPIF1<0,由點差法可得SKIPIF1<0,SKIPIF1<0,從而可以求出SKIPIF1<0.【詳解】(1)∵SKIPIF1<0為等邊三角形時,其面積為SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,根據(jù)SKIPIF1<0和拋物線的定義可知,SKIPIF1<0落在準(zhǔn)線上,即SKIPIF1<0,設(shè)準(zhǔn)線和SKIPIF1<0軸交點為SKIPIF1<0,易證SKIPIF1<0,于是SKIPIF1<0,∴SKIPIF1<0的方程為SKIPIF1<0;(2)假設(shè)存在SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0線為段SKIPIF1<0的中點,設(shè)SKIPIF1<0,依題意得SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以切線SKIPIF1<0的斜率為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,線段SKIPIF1<0的中點SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,整理可得:SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,又因為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0三點共線,滿足SKIPIF1<0為SKIPIF1<0的中點,綜上,存在SKIPIF1<0,使得點SKIPIF1<0為SKIPIF1<0的中點恒成立,SKIPIF1<0.20.(2022秋·山西陽泉·高三統(tǒng)考期末)已知過點SKIPIF1<0的直線交拋物線SKIPIF1<0于SKIPIF1<0兩點,SKIPIF1<0為坐標(biāo)原點.(1)證明:SKIPIF1<0;(2)設(shè)SKIPIF1<0為拋物線的焦點,直線SKIPIF1<0與直線SKIPIF1<0交于點SKIPIF1<0,直線SKIPIF1<0交拋物線與SKIPIF1<0兩點(SKIPIF1<0在SKIPIF1<0軸的同側(cè)),求直線SKIPIF1<0與直線SKIPIF1<0交點的軌跡方程.【答案】(1)證明見解析(2)SKIPIF1<0【分析】(1)設(shè)SKIPIF1<0,SKIPIF1<0,利用SKIPIF1<0三點共線SKIPIF1<0,解得SKIPIF1<0,再利用向量數(shù)量積的坐標(biāo)表示即可求解;(2)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)題意可得SKIPIF1<0,由此解出SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的關(guān)系,進而得到直線SKIPIF1<0與直線SKIPIF1<0的方程,聯(lián)立即可求解.【詳解】(1)設(shè)SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0三點共線,所以SKIPIF1<0,所以SKIPIF1<0,整理可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.(2)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由題意SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0軸同側(cè),所以SKIPIF1<0,同理可得SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,同理SKIPIF1<0的方程為SKIPIF1<0,兩式聯(lián)立代入SKIPIF1<0,可得SKIPIF1<0,由題意可知交點不能在x軸上,所以交點的軌跡方程為SKIPIF1<0.21.(2023秋·遼寧營口·高三統(tǒng)考期末)已知橢圓SKIPIF1<0(SKIPIF1<0)的離心率為SKIPIF1<0,且經(jīng)過點SKIPIF1<0(1)求橢圓SKIPIF1<0的方程;(2)過SKIPIF1<0作兩直線與拋物線SKIPIF1<0(m>0)相切,且分別與橢圓C交于P,Q兩點,直線SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0①求證:SKIPIF1<0為定值;②試問直線SKIPIF1<0是否過定點,若是,求出定點坐標(biāo);若不是,說明理由.【答案】(1)SKIPIF1<0(2)①證明見解析;②直線SKIPIF1<0恒過定點SKIPIF1<0【分析】(1)根據(jù)橢圓的幾何性質(zhì)列方程求解SKIPIF1<0,即可得橢圓SKIPIF1<0的方程;(2)①設(shè)過SKIPIF1<0與拋物線SKIPIF1<0相切的直線方程為SKIPIF1<0(SKIPIF1<0),聯(lián)立直線與拋物線根據(jù)SKIPIF1<0得到關(guān)于切線斜率的一元二次方程,由韋達定理可求得SKIPIF1<0得值;②設(shè)直線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,代入橢圓方程可得較短坐標(biāo)關(guān)系,根據(jù)①中結(jié)論SKIPIF1<0或SKIPIF1<0,從而判斷直線所過定點,即可得結(jié)論.【詳解】(1)由題可得SKIPIF1<0,解得SKIPIF1<0,所以橢圓C的方程為SKIPIF1<0(2)①設(shè)過SKIPIF1<0與拋物線SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論