新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題14 直線與圓綜合問題(單選+多選+填空)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題14 直線與圓綜合問題(單選+多選+填空)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題14 直線與圓綜合問題(單選+多選+填空)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題14 直線與圓綜合問題(單選+多選+填空)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題14 直線與圓綜合問題(單選+多選+填空)(解析版)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

試卷第=page11頁,共=sectionpages33頁專題14直線與圓綜合問題(單選+多選+填空)一、單選題1.(2023春·湖北·高三校聯(lián)考階段練習(xí))已知點SKIPIF1<0,若在圓SKIPIF1<0上存在點SKIPIF1<0滿足SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)SKIPIF1<0,由SKIPIF1<0,化簡可得SKIPIF1<0,點SKIPIF1<0既在圓SKIPIF1<0上,也在圓SKIPIF1<0上,所以圓SKIPIF1<0與圓SKIPIF1<0有公共點,由圓與圓的位置關(guān)系求解即可.【詳解】設(shè)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0;記圓SKIPIF1<0,則點SKIPIF1<0既在圓SKIPIF1<0上,也在圓SKIPIF1<0上,所以圓SKIPIF1<0與圓SKIPIF1<0有公共點,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:C.2.(2023春·湖南岳陽·高三湖南省岳陽縣第一中學(xué)??茧A段練習(xí))已知直角SKIPIF1<0的直角頂點SKIPIF1<0在圓SKIPIF1<0上,若點SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)圓的性質(zhì),結(jié)合圓與圓的位置關(guān)系進(jìn)行求解即可.【詳解】因為圓SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,直角SKIPIF1<0的直角頂點SKIPIF1<0在圓SKIPIF1<0上,所以有SKIPIF1<0,因為直角SKIPIF1<0的直角頂點為SKIPIF1<0,所以點A在以SKIPIF1<0為直徑的圓上,因此圓心坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,因為點SKIPIF1<0在圓SKIPIF1<0上,所以這兩個圓位置關(guān)系為相交或內(nèi)切或外切,所以有SKIPIF1<0,故選:C3.(2023春·浙江寧波·高三校聯(lián)考階段練習(xí))過原點的動直線SKIPIF1<0與圓SKIPIF1<0交于不同的兩點SKIPIF1<0.記線段SKIPIF1<0的中點為SKIPIF1<0,則當(dāng)直線SKIPIF1<0繞原點轉(zhuǎn)動時,動點SKIPIF1<0的軌跡長度為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由條件求可得點SKIPIF1<0到SKIPIF1<0的中點的距離為定值,由此可求點SKIPIF1<0的軌跡,再求其軌跡長度.【詳解】方程SKIPIF1<0可化為SKIPIF1<0,所以圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,設(shè)SKIPIF1<0的中點為SKIPIF1<0,因為線段SKIPIF1<0的中點為SKIPIF1<0,所以SKIPIF1<0,又原點SKIPIF1<0在直線SKIPIF1<0上,所以SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,如圖,設(shè)圓SKIPIF1<0與SKIPIF1<0的交點為SKIPIF1<0聯(lián)立SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因為點SKIPIF1<0在圓SKIPIF1<0內(nèi),所以點SKIPIF1<0的軌跡方程為SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,同理SKIPIF1<0由對稱性可得SKIPIF1<0,所以圓弧SKIPIF1<0的長度為SKIPIF1<0.故選:D.4.(2023·浙江·校聯(lián)考三模)在平面直角坐標(biāo)系上,圓SKIPIF1<0,直線SKIPIF1<0與圓SKIPIF1<0交于SKIPIF1<0兩點,SKIPIF1<0,則當(dāng)SKIPIF1<0的面積最大時,SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用點到直線距離公式表示出圓心到直線距離SKIPIF1<0,并由SKIPIF1<0的范圍確定SKIPIF1<0的范圍;利用垂徑定理表示出SKIPIF1<0,由SKIPIF1<0,根據(jù)基本不等式取等條件可構(gòu)造方程求得結(jié)果.【詳解】由圓的方程知:圓心SKIPIF1<0,半徑SKIPIF1<0,則圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時取等號),則當(dāng)SKIPIF1<0的面積最大時,SKIPIF1<0,又SKIPIF1<0,解得:SKIPIF1<0.故選:C.5.(2023·福建福州·統(tǒng)考二模)已知SKIPIF1<0,SKIPIF1<0關(guān)于直線SKIPIF1<0對稱的圓記為SKIPIF1<0,點E,F(xiàn)分別為SKIPIF1<0,SKIPIF1<0上的動點,EF長度的最小值為4,則SKIPIF1<0(

)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】D【分析】畫出圖形,當(dāng)SKIPIF1<0過兩圓圓心且與對稱軸垂直又接近于對稱軸時,SKIPIF1<0長度最小,此時圓心SKIPIF1<0到對稱軸的距離為4,根據(jù)點到直線的的公式建立方程即可求解.【詳解】由題易知兩圓不可能相交或相切,則如圖,當(dāng)SKIPIF1<0過兩圓圓心且與對稱軸垂直又接近于對稱軸時,SKIPIF1<0長度最小,此時圓心SKIPIF1<0到對稱軸的距離為4,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故選:D6.(2023春·江蘇南通·高三??奸_學(xué)考試)已知圓C:SKIPIF1<0,過點SKIPIF1<0的直線與圓C交于A,B兩點.若SKIPIF1<0,則r的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)題意,取SKIPIF1<0中點為SKIPIF1<0,由勾股定理可得SKIPIF1<0,然后再根據(jù)SKIPIF1<0的坐標(biāo)得到SKIPIF1<0,列出方程即可得到SKIPIF1<0.【詳解】取SKIPIF1<0中點為SKIPIF1<0,則可得SKIPIF1<0,因為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0為等邊三角形,所以SKIPIF1<0,SKIPIF1<0,在直角三角形SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0又因為SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0故選:A7.(2023春·湖南長沙·高三長沙一中??茧A段練習(xí))如圖,圓SKIPIF1<0,點SKIPIF1<0為直線SKIPIF1<0上一動點,過點SKIPIF1<0引圓SKIPIF1<0的兩條切線,切點分別為SKIPIF1<0;若兩條切線SKIPIF1<0與SKIPIF1<0軸分別交于SKIPIF1<0兩點,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】B【分析】利用SKIPIF1<0到切線的距離等于SKIPIF1<0列方程,結(jié)合根與系數(shù)關(guān)系,求得SKIPIF1<0的表達(dá)式,進(jìn)而求得SKIPIF1<0的最小值.【詳解】解:由題知,切線的斜率存在,設(shè)切線方程為SKIPIF1<0,即SKIPIF1<0.設(shè)圓心SKIPIF1<0到切線的距離為SKIPIF1<0,則SKIPIF1<0,化簡得SKIPIF1<0,則SKIPIF1<0,設(shè)兩條切線SKIPIF1<0的斜率分別為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.在切線SKIPIF1<0中,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,此時SKIPIF1<0

故SKIPIF1<0的最小值為SKIPIF1<0.故選:B.8.(2023·湖北武漢·統(tǒng)考模擬預(yù)測)設(shè)A,B是半徑為3的球體O表面上兩定點,且SKIPIF1<0,球體O表面上動點P滿足SKIPIF1<0,則點P的軌跡長度為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】建立直角坐標(biāo)系,根據(jù)SKIPIF1<0確定軌跡為圓,轉(zhuǎn)化到空間得到軌跡為兩球的交線,計算球心距SKIPIF1<0,對應(yīng)圓的半徑為SKIPIF1<0,再計算周長得到答案.【詳解】以SKIPIF1<0所在的平面建立直角坐標(biāo)系,SKIPIF1<0為SKIPIF1<0軸,SKIPIF1<0的垂直平分線為SKIPIF1<0軸,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,整理得到SKIPIF1<0,故SKIPIF1<0軌跡是以SKIPIF1<0為圓心,半徑SKIPIF1<0的圓,轉(zhuǎn)化到空間中:當(dāng)SKIPIF1<0繞SKIPIF1<0為軸旋轉(zhuǎn)一周時,SKIPIF1<0不變,依然滿足SKIPIF1<0,故空間中SKIPIF1<0的軌跡為以SKIPIF1<0為球心,半徑為SKIPIF1<0的球,同時SKIPIF1<0在球SKIPIF1<0上,故SKIPIF1<0在兩球的交線上,為圓.球心距為SKIPIF1<0,SKIPIF1<0為直角三角形,對應(yīng)圓的半徑為SKIPIF1<0,周長為SKIPIF1<0.故選:D二、多選題9.(2023·遼寧沈陽·統(tǒng)考一模)已知圓SKIPIF1<0,點SKIPIF1<0是直線SKIPIF1<0上的動點,過點SKIPIF1<0作圓SKIPIF1<0的兩條切線,切點分別為SKIPIF1<0、SKIPIF1<0,則下列說法正確的是(

)A.切線長SKIPIF1<0的最小值為SKIPIF1<0B.四邊形SKIPIF1<0面積的最小值為SKIPIF1<0C.若SKIPIF1<0是圓SKIPIF1<0的一條直徑,則SKIPIF1<0的最小值為SKIPIF1<0D.直線SKIPIF1<0恒過定點SKIPIF1<0【答案】ABD【分析】利用勾股定理可求得切線長SKIPIF1<0的最小值,可判斷A選項;利用三角形的面積公式可判斷B選項;利用平面向量數(shù)量積的運算性質(zhì)以及SKIPIF1<0的最小值,可判斷C選項;設(shè)點SKIPIF1<0,求出直線SKIPIF1<0的方程,可求得直線SKIPIF1<0恒過定點的坐標(biāo),可判斷D選項.【詳解】圓心為SKIPIF1<0,圓SKIPIF1<0的半徑為SKIPIF1<0,由圓的幾何性質(zhì)可知,SKIPIF1<0,SKIPIF1<0.對于A選項,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0取最小值,且SKIPIF1<0,所以,SKIPIF1<0,A對;對于B選項,由切線長定理可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,B對;對于C選項,易知SKIPIF1<0為SKIPIF1<0的中點,SKIPIF1<0SKIPIF1<0,C錯;對于D選項,設(shè)點SKIPIF1<0,則SKIPIF1<0,線段SKIPIF1<0的中點為SKIPIF1<0,SKIPIF1<0,所以,以SKIPIF1<0為直徑的圓SKIPIF1<0的方程為SKIPIF1<0,即圓SKIPIF1<0的方程為SKIPIF1<0,將圓SKIPIF1<0的方程與圓SKIPIF1<0的方程作差可得SKIPIF1<0,即SKIPIF1<0,故直線SKIPIF1<0的方程為SKIPIF1<0,變形可得SKIPIF1<0.由SKIPIF1<0可得SKIPIF1<0,所以,直線SKIPIF1<0恒過定點SKIPIF1<0,D對.故選:ABD.10.(2023春·福建南平·高三校聯(lián)考階段練習(xí))已知圓SKIPIF1<0,點P為直線SKIPIF1<0上一動點,下列結(jié)論正確的是(

)A.直線l與圓C相離B.圓C上有且僅有一個點到直線l的距離等于1C.過點P向圓C引一條切線PA,A為切點,則SKIPIF1<0的最小值為SKIPIF1<0D.過點P向圓C引兩條切線PA和PB,A、B為切點,則直線AB過定點【答案】ACD【分析】根據(jù)圓心到直線的距離判斷A,由圓心到直線的距離與圓的半徑差判斷B,根據(jù)勾股定理轉(zhuǎn)化為求直線上點到圓心距離最小值判斷C,求出過SKIPIF1<0的直線方程,根據(jù)方程求定點判斷D.【詳解】對于A,圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,所以直線與圓相離,故A正確;對于B,由A知SKIPIF1<0,SKIPIF1<0,故圓C上有2個點到直線l的距離等于1,故B錯誤;對于C,SKIPIF1<0,當(dāng)且僅當(dāng)PC與直線SKIPIF1<0垂直時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0,故C正確;對于D,設(shè)點SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,由切線性質(zhì)可知SKIPIF1<0四點共圓,且圓的直徑為SKIPIF1<0,所以圓的方程為SKIPIF1<0,兩圓的方程作差,得公共弦SKIPIF1<0所在直線方程為SKIPIF1<0,即SKIPIF1<0,整理可得SKIPIF1<0,解方程SKIPIF1<0,解得SKIPIF1<0,所以直線AB過定點SKIPIF1<0,故D正確.故選:ACD11.(2023·山東菏澤·統(tǒng)考一模)已知圓SKIPIF1<0,下列說法正確有(

)A.對于SKIPIF1<0,直線SKIPIF1<0與圓SKIPIF1<0都有兩個公共點B.圓SKIPIF1<0與動圓SKIPIF1<0有四條公切線的充要條件是SKIPIF1<0C.過直線SKIPIF1<0上任意一點SKIPIF1<0作圓SKIPIF1<0的兩條切線SKIPIF1<0(SKIPIF1<0為切點),則四邊形SKIPIF1<0的面積的最小值為4D.圓SKIPIF1<0上存在三點到直線SKIPIF1<0距離均為1【答案】BC【分析】對于選項A,轉(zhuǎn)化為判斷直線恒過的定點與圓的位置關(guān)系即可;對于選項B,轉(zhuǎn)化為兩圓外離,運用幾何法求解即可;對于選項C,由SKIPIF1<0,轉(zhuǎn)化為求SKIPIF1<0最小值即可;對于選項D,設(shè)圓心到直線的距離為d,比較SKIPIF1<0與1的關(guān)系即可.【詳解】對于選項A,因為SKIPIF1<0,即:SKIPIF1<0,所以SKIPIF1<0,所以直線恒過定點SKIPIF1<0,又因為SKIPIF1<0,所以定點SKIPIF1<0在圓O外,所以直線SKIPIF1<0與圓O可能相交、相切、相離,即交點個數(shù)可能為0個、1個、2個.故選項A錯誤;對于選項B,因為圓O與動圓C有4條公切線,所以圓O與圓C相離,又因為圓O的圓心SKIPIF1<0,半徑SKIPIF1<0,圓C的圓心SKIPIF1<0,半徑SKIPIF1<0,所以SKIPIF1<0,即:SKIPIF1<0,解得:SKIPIF1<0.故選項B正確;對于選項C,SKIPIF1<0,又因為O到P的距離的最小值為O到直線SKIPIF1<0的距離,即:SKIPIF1<0,所以四邊形PAOB的面積的最小值為SKIPIF1<0.故選項C正確;對于選項D,因為圓O的圓心SKIPIF1<0,半徑SKIPIF1<0,則圓心O到直線SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0,所以圓O上存在兩點到直線SKIPIF1<0的距離為1.故選項D錯誤.故選:BC.12.(2023·山東臨沂·統(tǒng)考一模)已知圓SKIPIF1<0,點SKIPIF1<0,點SKIPIF1<0在圓SKIPIF1<0上,SKIPIF1<0為坐標(biāo)原點,則(

)A.線段SKIPIF1<0長的最大值為6 B.當(dāng)直線SKIPIF1<0與圓SKIPIF1<0相切時,SKIPIF1<0C.以線段SKIPIF1<0為直徑的圓不可能過原點SKIPIF1<0 D.SKIPIF1<0的最大值為20【答案】ABD【分析】由定點到圓上點的距離范圍可得A正確;根據(jù)切線長公式即可求得SKIPIF1<0,根據(jù)直徑所對圓周角為直角可知,當(dāng)SKIPIF1<0在SKIPIF1<0軸上時以線段SKIPIF1<0為直徑的圓過原點SKIPIF1<0;利用向量數(shù)量積的坐標(biāo)表示即可得出結(jié)論.【詳解】根據(jù)題意可知SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0,如下圖所示:易知SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0三點共線(且SKIPIF1<0點在中間)時,等號成立,即A正確;當(dāng)直線SKIPIF1<0與圓SKIPIF1<0相切時,由勾股定理可得SKIPIF1<0,所以B正確;若以線段SKIPIF1<0為直徑的圓過原點SKIPIF1<0,由直徑所對圓周角為直角可得SKIPIF1<0,易知當(dāng)SKIPIF1<0在SKIPIF1<0軸上時,滿足題意;所以以線段SKIPIF1<0為直徑的圓可能過原點SKIPIF1<0,即C錯誤;設(shè)點SKIPIF1<0,易知SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0的最大值為20,即D正確;故選:ABD13.(2023·湖北·宜昌市一中校聯(lián)考模擬預(yù)測)已知SKIPIF1<0.點SKIPIF1<0分別在SKIPIF1<0上.則(

)A.SKIPIF1<0的最大值為9 B.SKIPIF1<0的最小值為SKIPIF1<0C.若SKIPIF1<0平行于x軸,則SKIPIF1<0的最小值為SKIPIF1<0 D.若SKIPIF1<0平行于y軸,則SKIPIF1<0的最大值為SKIPIF1<0【答案】AB【分析】根據(jù)圓心距和兩圓的位置關(guān)系可得選項AB正確;將SKIPIF1<0沿SKIPIF1<0軸方向向左平移的過程,使得平移后的圓與SKIPIF1<0有公共點的最短平移距離即SKIPIF1<0的最小值,可求得SKIPIF1<0的最小值為SKIPIF1<0,同理可得SKIPIF1<0的最大值為SKIPIF1<0,即CD錯誤.【詳解】因為SKIPIF1<0的圓心為SKIPIF1<0,半徑SKIPIF1<0,SKIPIF1<0的圓心為SKIPIF1<0,半徑SKIPIF1<0,SKIPIF1<0的圓心為SKIPIF1<0,半徑SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0兩圓相離;SKIPIF1<0,SKIPIF1<0兩圓內(nèi)含.對于選項A:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0四點共線時取到等號,故A正確;對于B:因為SKIPIF1<0,所以兩圓內(nèi)含,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0四點共線時取到等號,故B正確.對于C:試想一個將SKIPIF1<0向左平移的過程,使得平移后的圓與SKIPIF1<0有公共點的最短平移距離即SKIPIF1<0的最小值,如下圖所示:當(dāng)SKIPIF1<0平移到SKIPIF1<0(圖中虛線位置)時與SKIPIF1<0相切,此時SKIPIF1<0,易知SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故C錯誤;同理如下圖所示:當(dāng)SKIPIF1<0平移到SKIPIF1<0(圖中虛線位置)時與SKIPIF1<0相切,作SKIPIF1<0垂直于SKIPIF1<0軸,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的最大值為SKIPIF1<0,可得D錯誤.故選:AB14.(2023春·湖北·高三統(tǒng)考階段練習(xí))已知圓SKIPIF1<0,直線SKIPIF1<0,SKIPIF1<0為直線SKIPIF1<0上的動點,過點SKIPIF1<0作圓SKIPIF1<0的切線SKIPIF1<0,SKIPIF1<0,切點為SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是(

)A.當(dāng)SKIPIF1<0最大時,SKIPIF1<0B.當(dāng)SKIPIF1<0最大時,直線SKIPIF1<0的方程為SKIPIF1<0C.四邊形SKIPIF1<0面積的最大值為SKIPIF1<0D.四邊形SKIPIF1<0面積的最小值為SKIPIF1<0【答案】BD【分析】由題意可知:當(dāng)SKIPIF1<0時,四邊形SKIPIF1<0面積最小,且SKIPIF1<0最大,利用三角形的面積公式可判斷SKIPIF1<0選項;結(jié)合題意可知:四邊形SKIPIF1<0為正方形,利用正方形的幾何性質(zhì)可判斷SKIPIF1<0選項.【詳解】如圖所示:由圓的幾何性質(zhì)可得SKIPIF1<0,SKIPIF1<0,由切線長定理可得SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0取最小值,且SKIPIF1<0,所以四邊形SKIPIF1<0的面積的最小值為SKIPIF1<0,因為SKIPIF1<0無最大值,即SKIPIF1<0無最大值,故四邊形SKIPIF1<0面積無最大值,SKIPIF1<0錯SKIPIF1<0對SKIPIF1<0因為SKIPIF1<0為銳角,SKIPIF1<0,且SKIPIF1<0,故當(dāng)SKIPIF1<0最小時,SKIPIF1<0最大,此時SKIPIF1<0最大,此時SKIPIF1<0,SKIPIF1<0錯SKIPIF1<0由上可知,當(dāng)SKIPIF1<0最大時,SKIPIF1<0且SKIPIF1<0,故四邊形SKIPIF1<0為正方形,且有SKIPIF1<0,則SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0即點SKIPIF1<0,由正方形的幾何性質(zhì)可知,直線SKIPIF1<0過線段SKIPIF1<0的中點SKIPIF1<0,此時直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0對SKIPIF1<0故選:SKIPIF1<0.15.(2023·湖北·統(tǒng)考模擬預(yù)測)已知直線SKIPIF1<0交SKIPIF1<0軸于點P,圓SKIPIF1<0,過點P作圓M的兩條切線,切點分別為A,B,直線SKIPIF1<0與SKIPIF1<0交于點C,則(

)A.若直線l與圓M相切,則SKIPIF1<0B.當(dāng)SKIPIF1<0時,四邊形SKIPIF1<0的面積為SKIPIF1<0C.直線SKIPIF1<0經(jīng)過一定點D.已知點SKIPIF1<0,則SKIPIF1<0為定值【答案】ACD【分析】根據(jù)圓心到直線距離等于半徑建立等式,解出SKIPIF1<0即可判斷A;根據(jù)SKIPIF1<0求出SKIPIF1<0,進(jìn)而求出SKIPIF1<0,根據(jù)相切可得四邊形面積等于兩個全等的直角三角形面積和,根據(jù)三角形面積公式即可求出結(jié)果;根據(jù)相切可知SKIPIF1<0四點共圓,且SKIPIF1<0為直徑,求出圓的方程即可得弦所在的直線方程,進(jìn)而判斷C;根據(jù)直線SKIPIF1<0過定點及SKIPIF1<0可得SKIPIF1<0,即C在以SKIPIF1<0為直徑的圓上,求出圓的方程可發(fā)現(xiàn)圓心為點SKIPIF1<0,即可判斷D.【詳解】解:對于A,若直線l與圓M相切,則圓心到直線的距離SKIPIF1<0,解得SKIPIF1<0,所以A正確;對于B,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0為圓的兩條切線,所以SKIPIF1<0,所以四邊形SKIPIF1<0的面積SKIPIF1<0,所以B錯誤;對于C,因為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0四點共圓,且SKIPIF1<0為直徑,所以該圓圓心為SKIPIF1<0,半徑為SKIPIF1<0,所以圓的方程為:SKIPIF1<0,因為SKIPIF1<0是該圓和圓SKIPIF1<0的相交弦,所以直線SKIPIF1<0的方程為兩圓方程相減,即SKIPIF1<0,化簡可得:SKIPIF1<0,所以直線SKIPIF1<0經(jīng)過定點SKIPIF1<0,所以C正確;對于D,因為SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0在直線SKIPIF1<0上,所以SKIPIF1<0即點C在以SKIPIF1<0為直徑的圓上,因為SKIPIF1<0,SKIPIF1<0,所以圓心為SKIPIF1<0,半徑為SKIPIF1<0,所以圓的方程為:SKIPIF1<0,圓心為SKIPIF1<0,因為點C在該圓上,所以SKIPIF1<0為定值SKIPIF1<0,所以D正確.故選:ACD16.(2023春·湖南長沙·高三雅禮中學(xué)??茧A段練習(xí))已知直線SKIPIF1<0,則下列說法正確的是(

)A.直線SKIPIF1<0一定不過原點B.存在定點SKIPIF1<0,使得點SKIPIF1<0到直線SKIPIF1<0的距離為定值C.點SKIPIF1<0到直線SKIPIF1<0的最小值為SKIPIF1<0D.若直線SKIPIF1<0分別與SKIPIF1<0軸,SKIPIF1<0軸交于SKIPIF1<0兩點,則SKIPIF1<0的周長可以等于12【答案】ABD【分析】將原點SKIPIF1<0代入直線方程解SKIPIF1<0判斷A,設(shè)SKIPIF1<0,利用點到直線距離公式判斷B,由B可得直線SKIPIF1<0為圓SKIPIF1<0的切線,利用直線和圓的位置關(guān)系判斷C,利用特殊點判斷選項D.【詳解】選項A:將SKIPIF1<0代入直線SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0無解,選項A正確;選項B:設(shè)點SKIPIF1<0,則點SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0,故當(dāng)SKIPIF1<0點坐標(biāo)為SKIPIF1<0時,點SKIPIF1<0到直線SKIPIF1<0的距離為定值SKIPIF1<0,選項B正確;選項C:由選項B可知直線SKIPIF1<0為圓SKIPIF1<0的切線,設(shè)點SKIPIF1<0到切線的距離為SKIPIF1<0,所以SKIPIF1<0,所以點SKIPIF1<0到直線SKIPIF1<0的最小值SKIPIF1<0,選項C錯誤;選項D:由圖像可知隨直線SKIPIF1<0斜率由SKIPIF1<0,SKIPIF1<0的周長先減小,再增大,存在最小值,不妨在圓上取一點SKIPIF1<0作切線,記為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0的周長為SKIPIF1<0,選項D正確;故選:ABD17.(2023·湖南·湖南師大附中校聯(lián)考模擬預(yù)測)已知SKIPIF1<0為圓SKIPIF1<0上的兩點,SKIPIF1<0為直線SKIPIF1<0上一動點,則(

)A.直線SKIPIF1<0與圓SKIPIF1<0相離B.當(dāng)SKIPIF1<0為兩定點時,滿足SKIPIF1<0的點SKIPIF1<0有2個C.當(dāng)SKIPIF1<0時,SKIPIF1<0的最大值是SKIPIF1<0D.當(dāng)SKIPIF1<0為圓SKIPIF1<0的兩條切線時,直線SKIPIF1<0過定點SKIPIF1<0【答案】AD【分析】利用點到直線的距離判斷A;確定SKIPIF1<0最大時的情況判斷B;取AB中點D,由線段PD長判斷C;求出直線AB的方程判斷D作答.【詳解】對于A,因為SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,即直線SKIPIF1<0與圓SKIPIF1<0相離,A正確;對于B,當(dāng)A,B為過點P的圓O的切線的切點時,SKIPIF1<0最大,而SKIPIF1<0,顯然SKIPIF1<0是銳角,正弦函數(shù)在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,因此SKIPIF1<0最大,當(dāng)且僅當(dāng)SKIPIF1<0最大,當(dāng)且僅當(dāng)SKIPIF1<0最小,則有SKIPIF1<0,此時SKIPIF1<0,所以當(dāng)SKIPIF1<0為兩定點時,滿足SKIPIF1<0的點SKIPIF1<0只有1個,B錯誤;對于C,令A(yù)B的中點為D,則SKIPIF1<0,SKIPIF1<0,點D在以O(shè)為圓心,SKIPIF1<0為半徑的圓上,SKIPIF1<0,顯然當(dāng)SKIPIF1<0在SKIPIF1<0上運動時,SKIPIF1<0無最大值,C不正確;對于D,設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0為切線時,SKIPIF1<0,點SKIPIF1<0在以SKIPIF1<0為直徑的圓上,此圓的方程為SKIPIF1<0,于是直線SKIPIF1<0為SKIPIF1<0,即SKIPIF1<0,所以直線SKIPIF1<0過定點SKIPIF1<0,D正確.故選:AD18.(2023·廣東汕頭·統(tǒng)考一模)已知直線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0:SKIPIF1<0,圓C:SKIPIF1<0,若圓C與直線SKIPIF1<0,SKIPIF1<0都相切,則下列選項一定正確的是(

)A.SKIPIF1<0與SKIPIF1<0關(guān)于直線SKIPIF1<0對稱B.若圓C的圓心在x軸上,則圓C的半徑為3或9C.圓C的圓心在直線SKIPIF1<0或直線SKIPIF1<0上D.與兩坐標(biāo)軸都相切的圓C有且只有2個【答案】ACD【分析】對于A,將線關(guān)于線對稱轉(zhuǎn)化為點關(guān)于線對稱,利用點關(guān)于線對稱的解決辦法及點在直線上即可求解;對于B,根據(jù)已知條件設(shè)出圓心,利用直線與圓的相切的條件及點到直線的距離公式即可求解;對于C,利用圓的標(biāo)準(zhǔn)方程得出圓心和半徑,利用直線與圓的相切的條件及點到直線的距離公式,結(jié)合點在直線上即可求解;對于D,根據(jù)已知條件及選項C的結(jié)論,利用點到坐標(biāo)軸的距離公式及半徑的定義,結(jié)合點在直線上即可求解.【詳解】對于A,設(shè)直線SKIPIF1<0:SKIPIF1<0上任意一點SKIPIF1<0關(guān)于直線SKIPIF1<0對稱的點為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以點SKIPIF1<0在直線SKIPIF1<0:SKIPIF1<0上,所以SKIPIF1<0與SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,故A正確;對于B,因為圓C的圓心在x軸上,設(shè)圓心為SKIPIF1<0,因為圓C與直線SKIPIF1<0,SKIPIF1<0都相切,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,故B錯誤;對于C,由圓C:SKIPIF1<0,得圓心為SKIPIF1<0,半徑為SKIPIF1<0,因為圓C與直線SKIPIF1<0,SKIPIF1<0都相切,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以圓心SKIPIF1<0在直線SKIPIF1<0或直線SKIPIF1<0上,故C正確;對于D,由圓C:SKIPIF1<0,得圓心為SKIPIF1<0,半徑為SKIPIF1<0,因為圓SKIPIF1<0與兩坐標(biāo)軸都相切,得圓心到SKIPIF1<0軸的距離為SKIPIF1<0,到SKIPIF1<0軸的距離為SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,由題意可知SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,此時不滿足,所以與兩坐標(biāo)軸都相切的圓C有且只有2個,故D正確.故選:ACD.19.(2023秋·江蘇蘇州·高三統(tǒng)考期末)已知圓C:SKIPIF1<0點P在直線l:SKIPIF1<0上運動,以線段PC為直徑的圓D與圓C相交于A,B兩點,則下列結(jié)論正確的是(

)A.直線l與圓SKIPIF1<0相離 B.圓D的面積的最小值為SKIPIF1<0C.弦長SKIPIF1<0的最大值為2 D.直線AB過定點【答案】ABD【分析】根據(jù)圓心SKIPIF1<0到直線SKIPIF1<0的距離與半徑1的大小關(guān)系可判斷A;設(shè)SKIPIF1<0,利用兩點間的距離公式求出圓SKIPIF1<0的半徑,從而可得半徑的最小值,可判斷B;結(jié)合點SKIPIF1<0的坐標(biāo),可表示圓SKIPIF1<0的方程,再求出相交弦SKIPIF1<0的直線方程,從而可判斷D;根據(jù)圓SKIPIF1<0直徑為2,弦SKIPIF1<0不過圓心,所以小于2,可判斷C.【詳解】解:由題設(shè)得圓SKIPIF1<0的圓心SKIPIF1<0,半徑為1,對于選項A:圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,所以直線SKIPIF1<0與圓SKIPIF1<0相離,A正確;對于選項B:由于點SKIPIF1<0在直線SKIPIF1<0上運動,設(shè)SKIPIF1<0,則圓SKIPIF1<0的圓心SKIPIF1<0,所以圓SKIPIF1<0的半徑SKIPIF1<0,故當(dāng)SKIPIF1<0時半徑SKIPIF1<0有最小值SKIPIF1<0,所以圓SKIPIF1<0的面積的最小值為SKIPIF1<0,故B正確;對于選項D:由上面的B選項可知圓SKIPIF1<0的方程為SKIPIF1<0,將圓SKIPIF1<0的方程與圓SKIPIF1<0的方程相減可得相交弦SKIPIF1<0的直線方程為:SKIPIF1<0,整理得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以直線SKIPIF1<0過定點SKIPIF1<0,故D正確;對于選項C:由C得,弦SKIPIF1<0的直線方程為:SKIPIF1<0,若弦SKIPIF1<0過圓心SKIPIF1<0,則SKIPIF1<0,方程無解,所以弦SKIPIF1<0不過圓心SKIPIF1<0,從而小于圓SKIPIF1<0直徑,圓SKIPIF1<0直徑為2,故C錯誤.故選:ABD.20.(2023春·河北邢臺·高三邢臺市第二中學(xué)??茧A段練習(xí))已知點SKIPIF1<0,圓C:SKIPIF1<0,點P是圓C上的一點,則下列說法正確的是(

)A.若SKIPIF1<0,則SKIPIF1<0B.SKIPIF1<0的最小值為SKIPIF1<0C.設(shè)線段PA的中點為Q,則點Q到直線SKIPIF1<0的距離的取值范圍是SKIPIF1<0D.過直線SKIPIF1<0上一點T引圓C的兩條切線,切點分別為M,N,則SKIPIF1<0的取值范圍是SKIPIF1<0【答案】AD【分析】由圓的方程,設(shè)圓上一點SKIPIF1<0,判斷A,B,C的正誤,數(shù)形結(jié)合,得SKIPIF1<0,判斷D的正誤.【詳解】設(shè)SKIPIF1<0,對于A,SKIPIF1<0,故A正確;對于B,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0,即P點為SKIPIF1<0時,SKIPIF1<0,故B錯誤;對于C,SKIPIF1<0,所以點Q到直線SKIPIF1<0的距離SKIPIF1<0,故C錯誤;對于D,如圖所示,SKIPIF1<0,又CMSKIPIF1<0TM,CNSKIPIF1<0TN,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故D正確.故選:AD.三、填空題21.(2023·安徽·統(tǒng)考一模)已知圓SKIPIF1<0,直線SKIPIF1<0(SKIPIF1<0是參數(shù)),則直線SKIPIF1<0被圓SKIPIF1<0截得的弦長的最小值為__________.【答案】SKIPIF1<0【分析】求出直線所過定點A,判斷定點在圓內(nèi),數(shù)形結(jié)合知直線SKIPIF1<0截圓SKIPIF1<0所得弦長最小時,弦心距最大,此時SKIPIF1<0,即可由勾股定理求出此時的弦長.【詳解】直線l可化為SKIPIF1<0,令SKIPIF1<0,所以直線l恒過定點SKIPIF1<0,易知點A在圓C內(nèi),所以直線SKIPIF1<0截圓SKIPIF1<0所得弦長最小時,弦心距最大,此時SKIPIF1<0,SKIPIF1<0圓SKIPIF1<0,圓心SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論