廣西南寧市第四中學2025屆高三第六次模擬考試數(shù)學試卷含解析_第1頁
廣西南寧市第四中學2025屆高三第六次模擬考試數(shù)學試卷含解析_第2頁
廣西南寧市第四中學2025屆高三第六次模擬考試數(shù)學試卷含解析_第3頁
廣西南寧市第四中學2025屆高三第六次模擬考試數(shù)學試卷含解析_第4頁
廣西南寧市第四中學2025屆高三第六次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西南寧市第四中學2025屆高三第六次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則()A. B. C. D.22.將函數(shù)向左平移個單位,得到的圖象,則滿足()A.圖象關于點對稱,在區(qū)間上為增函數(shù)B.函數(shù)最大值為2,圖象關于點對稱C.圖象關于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根3.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣124.已知點(m,8)在冪函數(shù)的圖象上,設,則()A.b<a<c B.a<b<c C.b<c<a D.a<c<b5.已知實數(shù),滿足約束條件,則目標函數(shù)的最小值為A. B.C. D.6.函數(shù)在上單調遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)7.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術”.現(xiàn)有高階等差數(shù)列,其前7項分別為1,4,8,14,23,36,54,則該數(shù)列的第19項為()(注:)A.1624 B.1024 C.1198 D.15608.已知集合,,則()A. B.C. D.9.若單位向量,夾角為,,且,則實數(shù)()A.-1 B.2 C.0或-1 D.2或-110.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個單位長度而得到,則函數(shù)的解析式為()A. B.C. D.11.已知集合A,B=,則A∩B=A. B. C. D.12.若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.4二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系xOy中,若圓C1:x2+(y-1)2=r2(r>0)上存在點P,且點P關于直線x-y=0的對稱點Q在圓C2:(x-2)2+(y-1)2=1上,則r的取值范圍是________.14.如果復數(shù)滿足,那么______(為虛數(shù)單位).15.在平面直角坐標系中,已知點,,若圓上有且僅有一對點,使得的面積是的面積的2倍,則的值為_______.16.在四棱錐中,是邊長為的正三角形,為矩形,,.若四棱錐的頂點均在球的球面上,則球的表面積為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.18.(12分)已知,,分別為內角,,的對邊,若同時滿足下列四個條件中的三個:①;②;③;④.(1)滿足有解三角形的序號組合有哪些?(2)在(1)所有組合中任選一組,并求對應的面積.(若所選條件出現(xiàn)多種可能,則按計算的第一種可能計分)19.(12分)若數(shù)列前n項和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項公式:(2)設,且數(shù)列為等比數(shù)列,令,.求證:.20.(12分)已知件次品和件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產品,檢測后不放回,直到檢測出件次品或者檢測出件正品時檢測結束.(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;(2)已知每檢測一件產品需要費用元,設表示直到檢測出件次品或者檢測出件正品時所需要的檢測費用(單位:元),求的分布列.21.(12分)在平面直角坐標系中,已知橢圓的短軸長為,直線與橢圓相交于兩點,線段的中點為.當與連線的斜率為時,直線的傾斜角為(1)求橢圓的標準方程;(2)若是以為直徑的圓上的任意一點,求證:22.(10分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

結合求得的值,由此化簡所求表達式,求得表達式的值.【詳解】由,以及,解得..故選:B【點睛】本小題主要考查利用同角三角函數(shù)的基本關系式化簡求值,考查二倍角公式,屬于中檔題.2、C【解析】

由輔助角公式化簡三角函數(shù)式,結合三角函數(shù)圖象平移變換即可求得的解析式,結合正弦函數(shù)的圖象與性質即可判斷各選項.【詳解】函數(shù),則,將向左平移個單位,可得,由正弦函數(shù)的性質可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關于直線對稱;當時,,由正弦函數(shù)性質可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當,,由正弦函數(shù)的圖象與性質可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點睛】本題考查了三角函數(shù)式的化簡,三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質的綜合應用,屬于中檔題.3、D【解析】

分別聯(lián)立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結果.【詳解】設,聯(lián)立則,因為直線經過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數(shù),屬基礎題。4、B【解析】

先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調遞增,再利用冪函數(shù)f(x)的單調性,即可得到a,b,c的大小關系.【詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點睛】本題主要考查了冪函數(shù)的性質,以及利用函數(shù)的單調性比較函數(shù)值大小,屬于中檔題.5、B【解析】

作出不等式組對應的平面區(qū)域,目標函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結合即可得到的最小值.【詳解】解:作出不等式組對應的平面區(qū)域如圖:目標函數(shù)的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結合是解決本題的關鍵.6、B【解析】

根據(jù)題意分析的圖像關于直線對稱,即可得到的單調區(qū)間,利用對稱性以及單調性即可得到的取值范圍。【詳解】根據(jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關于直線對稱,若函數(shù)在上單調遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點睛】本題考查偶函數(shù)的性質,以及函數(shù)單調性的應用,有一定綜合性,屬于中檔題。7、B【解析】

根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項公式和前項和,利用累加法求得數(shù)列的通項公式,進而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設該數(shù)列為,令,設的前項和為,又令,設的前項和為.易,,進而得,所以,則,所以,所以.故選:B【點睛】本小題主要考查新定義數(shù)列的理解和運用,考查累加法求數(shù)列的通項公式,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.8、C【解析】

求出集合,計算出和,即可得出結論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎題.9、D【解析】

利用向量模的運算列方程,結合向量數(shù)量積的運算,求得實數(shù)的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數(shù)量積的運算,屬于基礎題.10、A【解析】

由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數(shù)的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎題.11、A【解析】

先解A、B集合,再取交集?!驹斀狻?所以B集合與A集合的交集為,故選A【點睛】一般地,把不等式組放在數(shù)軸中得出解集。12、C【解析】

由二項式系數(shù)性質,的展開式中所有二項式系數(shù)和為計算.【詳解】的二項展開式中二項式系數(shù)和為,.故選:C.【點睛】本題考查二項式系數(shù)的性質,掌握二項式系數(shù)性質是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設圓C1上存在點P(x0,y0),則Q(y0,x0),分別滿足兩個圓的方程,列出方程組,轉化成兩個新圓有公共點求參數(shù)范圍.【詳解】設圓C1上存在點P(x0,y0)滿足題意,點P關于直線x-y=0的對稱點Q(y0,x0),則,故只需圓x2+(y-1)2=r2與圓(x-1)2+(y-2)2=1有交點即可,所以|r-1|≤≤r+1,解得.故答案為:【點睛】此題考查圓與圓的位置關系,其中涉及點關于直線對稱點問題,兩個圓有公共點的判定方式.14、【解析】

把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡,然后利用復數(shù)模的計算公式求解.【詳解】∵,∴,∴,故答案為:.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)的模的求法,屬于基礎題.15、【解析】

寫出所在直線方程,求出圓心到直線的距離,結合題意可得關于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點,有且僅有一對,可得點到的距離是點到直線的距離的2倍,可得過圓的圓心,如圖:由,解得.故答案為:.【點睛】本題考查直線和圓的位置關系以及點到直線的距離公式應用,考查數(shù)形結合的解題思想方法,屬于中檔題.16、【解析】

做中點,的中點,連接,由已知條件可求出,運用余弦定理可求,從而在平面中建立坐標系,則以及的外接圓圓心為和長方形的外接圓圓心為在該平面坐標系的坐標可求,通過球心滿足,即可求出的坐標,從而可求球的半徑,進而能求出球的表面積.【詳解】解:如圖做中點,的中點,連接,由題意知,則設的外接圓圓心為,則在直線上且設長方形的外接圓圓心為,則在上且.設外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標原點,以所在直線為軸,以過點垂直于軸的直線為軸,如圖建立坐標系,由題意知,在平面中且設,則,因為,所以解得.則所以球的表面積為.故答案為:.【點睛】本題考查了幾何體外接球的問題,考查了球的表面積.關于幾何體的外接球的做題思路有:一是通過將幾何體補充到長方體中,將幾何體的外接球等同于長方體的外接球,求出體對角線即為直徑,但這種方法適用性較差;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設半徑列方程求解;三是通過空間、平面坐標系進行求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、.【解析】試題分析:,所以.試題解析:B.因為,所以.18、(1)①,③,④或②,③,④;(2).【解析】

(1)由①可求得的值,由②可求出角的值,結合題意得出,推出矛盾,可得出①②不能同時成為的條件,由此可得出結論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對應的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以,因為,且,所以,所以,矛盾.所以不能同時滿足①,②.故滿足①,③,④或②,③,④;(2)若滿足①,③,④,因為,所以,即.解得.所以的面積.若滿足②,③,④由正弦定理,即,解得,所以,所以的面積.【點睛】本題考查三角形能否成立的判斷,同時也考查了利用正弦定理和余弦定理解三角形,以及三角形面積的計算,要結合三角形已知元素類型合理選擇正弦定理或余弦定理解三角形,考查運算求解能力,屬于中等題.19、(1)(2)詳見解析【解析】

(1)利用可得的遞推關系,從而可求其通項.(2)由為等比數(shù)列可得,從而可得的通項,利用錯位相減法可得的前項和,利用不等式的性質可證.【詳解】(1)由題意,得:(t為常數(shù),且),當時,得,得.由,故,,故.(2)由,由為等比數(shù)列可知:,又,故,化簡得到,所以或(舍).所以,,則.設的前n項和為.則,相減可得【點睛】數(shù)列的通項與前項和的關系式,我們常利用這個關系式實現(xiàn)與之間的相互轉化.數(shù)列求和關鍵看通項的結構形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.20、(1);(2)見解析.【解析】

(1)利用獨立事件的概率乘法公式可計算出所求事件的概率;(2)由題意可知隨機變量的可能取值有、、,計算出隨機變量在不同取值下的概率,由此可得出隨機變量的分布列.【詳解】(1)記“第一次檢測出的是次品且第二次檢測出的是正品”為事件,則;(2)由題意可知,隨機變量的可能取值為、、.則,,.故的分布列為【點睛】本題考查概率的計算,同時也考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論