2025屆北京市豐臺區(qū)重點中學高三最后一模數學試題含解析_第1頁
2025屆北京市豐臺區(qū)重點中學高三最后一模數學試題含解析_第2頁
2025屆北京市豐臺區(qū)重點中學高三最后一模數學試題含解析_第3頁
2025屆北京市豐臺區(qū)重點中學高三最后一模數學試題含解析_第4頁
2025屆北京市豐臺區(qū)重點中學高三最后一模數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆北京市豐臺區(qū)重點中學高三最后一模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知全集,集合,,則陰影部分表示的集合是()A. B. C. D.2.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(包括邊界),則A.-3,1 B.-3,5 C.-∞,-33.函數的對稱軸不可能為()A. B. C. D.4.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.5.已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為()A. B. C. D.16.已知函數,,若對任意,總存在,使得成立,則實數的取值范圍為()A. B.C. D.7.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機取一件,其長度誤差落在區(qū)間(3,6)內的概率為()(附:若隨機變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%8.已知函數,,若成立,則的最小值為()A.0 B.4 C. D.9.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.10.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.11.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面?zhèn)€數分別記為,則下列結論正確的是()A. B. C. D.12.關于函數,下列說法正確的是()A.函數的定義域為B.函數一個遞增區(qū)間為C.函數的圖像關于直線對稱D.將函數圖像向左平移個單位可得函數的圖像二、填空題:本題共4小題,每小題5分,共20分。13.已知為橢圓上的一個動點,,,設直線和分別與直線交于,兩點,若與的面積相等,則線段的長為______.14.在中,已知,則的最小值是________.15.邊長為2的正方形經裁剪后留下如圖所示的實線圍成的部分,將所留部分折成一個正四棱錐.當該棱錐的體積取得最大值時,其底面棱長為________.16.已知雙曲線的漸近線與準線的一個交點坐標為,則雙曲線的焦距為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)若函數在上單調遞減,且函數在上單調遞增,求實數的值;(2)求證:(,且).18.(12分)已知函數.(1)討論函數單調性;(2)當時,求證:.19.(12分)試求曲線y=sinx在矩陣MN變換下的函數解析式,其中M,N.20.(12分)橢圓:的離心率為,點為橢圓上的一點.(1)求橢圓的標準方程;(2)若斜率為的直線過點,且與橢圓交于兩點,為橢圓的下頂點,求證:對于任意的實數,直線的斜率之積為定值.21.(12分)古人云:“腹有詩書氣自華.”為響應全民閱讀,建設書香中國,校園讀書活動的熱潮正在興起.某校為統(tǒng)計學生一周課外讀書的時間,從全校學生中隨機抽取名學生進行問卷調査,統(tǒng)計了他們一周課外讀書時間(單位:)的數據如下:一周課外讀書時間/合計頻數46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據表格中提供的數據,求,,的值并估算一周課外讀書時間的中位數.(2)如果讀書時間按,,分組,用分層抽樣的方法從名學生中抽取20人.①求每層應抽取的人數;②若從,中抽出的學生中再隨機選取2人,求這2人不在同一層的概率.22.(10分)在中,.(1)求的值;(2)點為邊上的動點(不與點重合),設,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先求出集合N的補集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,,可得或,又所以.故選:D.【點睛】本題考查了韋恩圖表示集合,集合的交集和補集的運算,屬于基礎題.2、D【解析】

畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內的點(x,y)和定點P(2,-1)設k=y+1x-2,結合圖形可得k≥k由題意得點A,B的坐標分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關鍵有兩個:一是根據數形結合的方法求解問題,即把y+1x-23、D【解析】

由條件利用余弦函數的圖象的對稱性,得出結論.【詳解】對于函數,令,解得,當時,函數的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數的圖象的對稱性,屬于基礎題.4、C【解析】

由得F是弦AB的中點.進而得AB垂直于x軸,得,再結合關系求解即可【詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經過雙曲線C的左頂點,所以,即,則,故.故選:C【點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎題.5、B【解析】

過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.設,將表示成關于的函數,再求函數的最值,即可得答案.【詳解】過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面平面ABCD,所以平面ABCD,所以.因為底面ABCD是邊長為1的正方形,,所以.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.易證平面平面ABE,所以點H到平面ABE的距離,即為H到EF的距離.不妨設,則,.因為,所以,所以,當時,等號成立.此時EH與ED重合,所以,.故選:B.【點睛】本題考查空間中點到面的距離的最值,考查函數與方程思想、轉化與化歸思想,考查空間想象能力和運算求解能力,求解時注意輔助線及面面垂直的應用.6、C【解析】

將函數解析式化簡,并求得,根據當時可得的值域;由函數在上單調遞減可得的值域,結合存在性成立問題滿足的集合關系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數在上單調遞增,當時,;而函數在上單調遞減,故,則只需,故,解得,故實數的取值范圍為.故選:C.【點睛】本題考查了導數在判斷函數單調性中的應用,恒成立與存在性成立問題的綜合應用,屬于中檔題.7、B【解析】試題分析:由題意故選B.考點:正態(tài)分布8、A【解析】

令,進而求得,再轉化為函數的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數在研究函數最值中的應用,考查了轉化的數學思想,恰當的用一個未知數來表示和是本題的關鍵,屬于中檔題.9、C【解析】

判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎題.10、D【解析】

根據幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.11、A【解析】

根據題意,畫出幾何位置圖形,由圖形的位置關系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結合四個選項可知,只有正確.故選:A.【點睛】本題考查了空間幾何體中直線與平面位置關系的判斷與綜合應用,對空間想象能力要求較高,屬于中檔題.12、B【解析】

化簡到,根據定義域排除,計算單調性知正確,得到答案.【詳解】,故函數的定義域為,故錯誤;當時,,函數單調遞增,故正確;當,關于的對稱的直線為不在定義域內,故錯誤.平移得到的函數定義域為,故不可能為,錯誤.故選:.【點睛】本題考查了三角恒等變換,三角函數單調性,定義域,對稱,三角函數平移,意在考查學生的綜合應用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先設點坐標,由三角形面積相等得出兩個三角形的邊之間的比例關系,這個比例關系又可用線段上點的坐標表示出來,從而可求得點的橫坐標,代入橢圓方程得縱坐標,然后可得.【詳解】如圖,設,,,由,得,由得,∴,解得,又在橢圓上,∴,,∴.故答案為:.【點睛】本題考查直線與橢圓相交問題,解題時由三角形面積相等得出線段長的比例關系,解題是由把線段長的比例關系用點的橫坐標表示.14、【解析】分析:可先用向量的數量積公式將原式變形為:,然后再結合余弦定理整理為,再由cosC的余弦定理得到a,b的關系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當a=b時取到等號,故cosC的最小值為.點睛:考查向量的數量積、余弦定理、基本不等式的綜合運用,能正確轉化是解題關鍵.屬于中檔題.15、【解析】

根據題意,建立棱錐體積的函數,利用導數求函數的最大值即可.【詳解】設底面邊長為,則斜高為,即此四棱錐的高為,所以此四棱錐體積為,令,令,易知函數在時取得最大值.故此時底面棱長.故答案為:.【點睛】本題考查棱錐體積的求解,涉及利用導數研究體積最大值的問題,屬綜合中檔題.16、1【解析】

由雙曲線的漸近線,以及求得的值即可得答案.【詳解】由于雙曲線的漸近線與準線的一個交點坐標為,所以,即①,把代入,得,即②又③聯立①②③,得.所以.故答案是:1.【點睛】本題考查雙曲線的性質,注意題目“雙曲線的漸近線與準線的一個交點坐標為”這一條件的運用,另外注意題目中要求的焦距即,容易只計算到,就得到結論.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)見解析【解析】

(1)分別求得與的導函數,由導函數與單調性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構造,由對數運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數在上單調遞減,∴,即在上恒成立,∴,又∵函數在上單調遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當時,函數在上為減函數,在上為增函數,而,∴當時,,當時,.∴∴即,∴.【點睛】本題考查了導數與函數單調性關系,放縮法在證明不等式中的應用,屬于難題.18、(1)見解析(2)見解析【解析】

(1)根據的導函數進行分類討論單調性(2)欲證,只需證,構造函數,證明,這時需研究的單調性,求其最大值即可【詳解】解:(1)的定義域為,,①當時,由得,由,得,所以在上單調遞增,在單調遞減;②當時,由得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增;③當時,,所以在上單調遞增;④當時,由,得,由,得,或,所以在上單調遞增,在單調遞減,在單調遞增.(2)當時,欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當變化時,,的變化如下:0單調遞增單調遞減所以.因為,所以,所以.即,所以當時,成立.【點睛】考查求函數單調性的方法和用函數的最值證明不等式的方法,難題.19、y=2sin2x.【解析】

計算MN,計算得到函數表達式.【詳解】∵M,N,∴MN,∴在矩陣MN變換下,→∴曲線y=sinx在矩陣MN變換下的函數解析式為y=2sin2x.【點睛】本題考查了矩陣變換,意在考查學生的計算能力.20、(1);(2)證明見解析【解析】

(1)運用離心率公式和點滿足橢圓方程,解得,,進而得到橢圓方程;(2)設直線,代入橢圓方程,運用韋達定理和直線的斜率公式,以及點在直線上滿足直線方程,化簡整理,即可得到定值.【詳解】(1)因為,所以,①又橢圓過點,所以②由①②,解得所以橢圓的標準方程為.(2)證明設直線:,聯立得,設,則易知故所以對于任意的,直線的斜率之積為定值.【點睛】本題考查橢圓的方程的求法,注意運用離心率公式和點滿足橢圓方程,考查直線方程和橢圓方程聯立,運用韋達定理和直線的斜率公式,化簡整理,考查運算能力,屬于中檔題.21、(1),,,中位數;(2)①三層中抽取的人數分別為2,5,13;②【解析】

(1)根據頻率分布直方表的性質,即可求得,得到,,再結合中位數的計算方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論