徐州工程學(xué)院《版式設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁(yè)
徐州工程學(xué)院《版式設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁(yè)
徐州工程學(xué)院《版式設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁(yè)
徐州工程學(xué)院《版式設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁(yè)
徐州工程學(xué)院《版式設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)徐州工程學(xué)院《版式設(shè)計(jì)》

2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的圖像壓縮任務(wù)中,假設(shè)要在保證一定圖像質(zhì)量的前提下,盡可能減少圖像的數(shù)據(jù)量。以下哪種圖像壓縮方法可能更有效?()A.基于離散余弦變換(DCT)的壓縮算法,如JPEGB.無(wú)損壓縮方法,如PNGC.不進(jìn)行任何壓縮,直接存儲(chǔ)原始圖像D.隨機(jī)刪除圖像中的部分像素2、在計(jì)算機(jī)視覺中,目標(biāo)檢測(cè)是一項(xiàng)重要的任務(wù)。假設(shè)要開發(fā)一個(gè)能夠在城市交通場(chǎng)景中檢測(cè)車輛和行人的系統(tǒng)。以下關(guān)于目標(biāo)檢測(cè)算法的選擇,哪一項(xiàng)是需要重點(diǎn)考慮的因素?()A.算法的檢測(cè)速度,以滿足實(shí)時(shí)性要求B.算法在小目標(biāo)檢測(cè)上的性能,因?yàn)檐囕v和行人在圖像中可能較小C.算法的模型復(fù)雜度,越復(fù)雜的模型效果越好D.算法是否開源,開源的算法更易于使用3、在計(jì)算機(jī)視覺中,圖像生成是創(chuàng)建新的圖像內(nèi)容。以下關(guān)于圖像生成的說(shuō)法,錯(cuò)誤的是()A.可以通過(guò)生成對(duì)抗網(wǎng)絡(luò)(GAN)、變分自編碼器(VAE)等模型進(jìn)行圖像生成B.圖像生成可以用于藝術(shù)創(chuàng)作、數(shù)據(jù)增強(qiáng)和虛擬場(chǎng)景構(gòu)建等任務(wù)C.生成的圖像質(zhì)量和真實(shí)性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據(jù)用戶的任意想象生成任何內(nèi)容,不受任何限制4、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,需要在視頻序列中持續(xù)跟蹤特定的目標(biāo)。假設(shè)我們要跟蹤一個(gè)在人群中快速移動(dòng)的人物,以下哪種目標(biāo)跟蹤算法能夠更好地處理目標(biāo)的外觀變化和遮擋情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于深度學(xué)習(xí)的跟蹤算法,如Siamese網(wǎng)絡(luò)D.基于均值漂移的跟蹤算法5、計(jì)算機(jī)視覺中的視覺注意力機(jī)制用于聚焦圖像中的重要區(qū)域。以下關(guān)于視覺注意力機(jī)制的說(shuō)法,不正確的是()A.視覺注意力機(jī)制可以根據(jù)圖像的特征和任務(wù)需求動(dòng)態(tài)地選擇關(guān)注的區(qū)域B.注意力機(jī)制能夠提高模型的效率和性能,減少對(duì)無(wú)關(guān)信息的處理C.視覺注意力機(jī)制在圖像分類、目標(biāo)檢測(cè)和圖像生成等任務(wù)中得到了廣泛應(yīng)用D.視覺注意力機(jī)制的引入會(huì)增加模型的復(fù)雜度和計(jì)算量,降低模型的訓(xùn)練速度6、目標(biāo)檢測(cè)是計(jì)算機(jī)視覺中的常見任務(wù),例如在監(jiān)控視頻中檢測(cè)行人或車輛。假設(shè)我們要開發(fā)一個(gè)目標(biāo)檢測(cè)系統(tǒng),以下關(guān)于目標(biāo)檢測(cè)算法的描述,哪一項(xiàng)是不正確的?()A.基于區(qū)域建議的方法,如R-CNN系列算法,通過(guò)生成候選區(qū)域并對(duì)其進(jìn)行分類和定位來(lái)實(shí)現(xiàn)目標(biāo)檢測(cè)B.一階段目標(biāo)檢測(cè)算法,如YOLO和SSD,直接在圖像上進(jìn)行目標(biāo)的分類和定位,速度相對(duì)較快C.目標(biāo)檢測(cè)算法的性能通常用準(zhǔn)確率、召回率和平均精度均值(mAP)等指標(biāo)來(lái)評(píng)估D.目標(biāo)檢測(cè)算法的精度和速度是相互獨(dú)立的,提高精度不會(huì)影響速度,反之亦然7、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別是對(duì)視頻中人物或物體的動(dòng)作進(jìn)行分類和識(shí)別。以下關(guān)于動(dòng)作識(shí)別的描述,不準(zhǔn)確的是()A.動(dòng)作識(shí)別需要分析視頻中的時(shí)空特征來(lái)理解動(dòng)作的模式和類別B.雙流卷積網(wǎng)絡(luò)在動(dòng)作識(shí)別任務(wù)中被廣泛應(yīng)用,分別處理空間和時(shí)間信息C.動(dòng)作識(shí)別在體育分析、視頻監(jiān)控和智能安防等領(lǐng)域具有重要的應(yīng)用價(jià)值D.動(dòng)作識(shí)別技術(shù)已經(jīng)非常成熟,能夠準(zhǔn)確識(shí)別各種復(fù)雜和細(xì)微的動(dòng)作8、在計(jì)算機(jī)視覺的研究中,數(shù)據(jù)集的質(zhì)量和規(guī)模對(duì)模型的訓(xùn)練和性能評(píng)估至關(guān)重要。以下關(guān)于數(shù)據(jù)集的描述,不準(zhǔn)確的是()A.大規(guī)模、多樣化和標(biāo)注準(zhǔn)確的數(shù)據(jù)集有助于訓(xùn)練出泛化能力強(qiáng)的模型B.一些公開的數(shù)據(jù)集如ImageNet、COCO等為計(jì)算機(jī)視覺研究提供了重要的基準(zhǔn)C.數(shù)據(jù)集的構(gòu)建需要耗費(fèi)大量的時(shí)間和人力,但可以通過(guò)數(shù)據(jù)增強(qiáng)技術(shù)來(lái)減少對(duì)原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構(gòu)建完成,就不需要再進(jìn)行更新和擴(kuò)展,能夠一直滿足研究的需求9、在進(jìn)行計(jì)算機(jī)視覺的三維重建時(shí),需要從多個(gè)視角的圖像中恢復(fù)物體的三維形狀和結(jié)構(gòu)。假設(shè)要對(duì)一個(gè)復(fù)雜的古建筑進(jìn)行三維重建,圖像采集存在視角偏差和部分遮擋。以下哪種三維重建方法在處理這種不完整和有噪聲的數(shù)據(jù)時(shí)效果較好?()A.基于立體視覺的重建B.基于運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)(SfM)的重建C.基于激光掃描的重建D.基于深度學(xué)習(xí)的重建10、在計(jì)算機(jī)視覺的圖像融合任務(wù)中,將多幅圖像合成為一幅更完整、更有信息的圖像。假設(shè)要將一張白天拍攝的風(fēng)景圖像和一張夜晚拍攝的同一地點(diǎn)的圖像進(jìn)行融合,以下關(guān)于圖像融合方法的描述,哪一項(xiàng)是不正確的?()A.可以基于像素級(jí)的融合策略,將兩幅圖像的像素值進(jìn)行加權(quán)或組合B.特征級(jí)融合方法先提取圖像的特征,然后進(jìn)行融合,能夠更好地保留圖像的語(yǔ)義信息C.圖像融合的效果只取決于融合算法的選擇,與輸入圖像的質(zhì)量和內(nèi)容無(wú)關(guān)D.多模態(tài)圖像融合需要考慮不同圖像的特點(diǎn)和互補(bǔ)性,以獲得更理想的融合結(jié)果11、計(jì)算機(jī)視覺中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)要對(duì)一段視頻中的物體運(yùn)動(dòng)進(jìn)行分析,以下關(guān)于光流估計(jì)的描述,正確的是:()A.稀疏光流估計(jì)只計(jì)算圖像中部分特征點(diǎn)的運(yùn)動(dòng),無(wú)法反映整體的運(yùn)動(dòng)趨勢(shì)B.稠密光流估計(jì)能夠得到圖像中每個(gè)像素的運(yùn)動(dòng)向量,但計(jì)算復(fù)雜度較高C.光流估計(jì)的結(jié)果不受光照變化和噪聲的影響,具有很高的準(zhǔn)確性D.光流估計(jì)只能用于分析勻速直線運(yùn)動(dòng)的物體,對(duì)于復(fù)雜的運(yùn)動(dòng)模式無(wú)法處理12、在計(jì)算機(jī)視覺的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的病變區(qū)域精確地分割出來(lái),以便醫(yī)生進(jìn)行診斷和治療。這張醫(yī)學(xué)圖像可能存在噪聲、模糊和不均勻的灰度分布。以下哪種圖像分割方法在處理這種復(fù)雜情況時(shí)可能更具優(yōu)勢(shì)?()A.基于閾值的分割方法,根據(jù)像素值設(shè)定閾值進(jìn)行分割B.基于區(qū)域生長(zhǎng)的分割方法,從種子點(diǎn)開始逐漸擴(kuò)展區(qū)域C.基于深度學(xué)習(xí)的語(yǔ)義分割算法,如U-NetD.隨機(jī)分割圖像,然后根據(jù)后續(xù)分析進(jìn)行調(diào)整13、假設(shè)要開發(fā)一個(gè)能夠在低光照條件下清晰拍攝并處理圖像的計(jì)算機(jī)視覺系統(tǒng),以下哪種圖像增強(qiáng)方法可能有助于改善圖像質(zhì)量?()A.直方圖均衡化B.伽馬校正C.暗通道先驗(yàn)去霧D.以上都是14、在計(jì)算機(jī)視覺的姿態(tài)估計(jì)任務(wù)中,例如估計(jì)人體關(guān)節(jié)的位置和姿態(tài),以下哪種方法可能在精度和實(shí)時(shí)性之間取得較好的平衡?()A.基于模型的方法B.基于深度學(xué)習(xí)的回歸方法C.基于深度學(xué)習(xí)的分類方法D.以上都不是15、計(jì)算機(jī)視覺中的顯著性檢測(cè)旨在找出圖像中引人注目的區(qū)域。假設(shè)要在一張復(fù)雜的自然風(fēng)景圖像中檢測(cè)顯著性區(qū)域,以下關(guān)于顯著性檢測(cè)方法的描述,哪一項(xiàng)是不正確的?()A.基于對(duì)比度的方法通過(guò)計(jì)算圖像區(qū)域與周圍區(qū)域的差異來(lái)確定顯著性B.基于頻域分析的方法可以從圖像的頻譜中提取顯著性信息C.深度學(xué)習(xí)方法能夠?qū)W習(xí)圖像的全局和局部特征,實(shí)現(xiàn)更準(zhǔn)確的顯著性檢測(cè)D.顯著性檢測(cè)的結(jié)果總是與人類的視覺注意力機(jī)制完全一致,沒有偏差16、在計(jì)算機(jī)視覺的三維重建任務(wù)中,需要從多視角的圖像中恢復(fù)物體的三維形狀。假設(shè)我們有一組從不同角度拍攝的建筑物圖像,以下哪種方法常用于從這些圖像中重建建筑物的三維模型?()A.立體匹配方法B.結(jié)構(gòu)光方法C.運(yùn)動(dòng)恢復(fù)結(jié)構(gòu)(SFM)D.基于投影的方法17、在計(jì)算機(jī)視覺的表情識(shí)別任務(wù)中,判斷圖像或視頻中人物的表情。假設(shè)要開發(fā)一個(gè)用于在線教育的表情識(shí)別系統(tǒng),以下關(guān)于表情識(shí)別方法的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)分析面部肌肉的運(yùn)動(dòng)和特征點(diǎn)的變化來(lái)識(shí)別表情B.深度學(xué)習(xí)模型能夠?qū)W習(xí)不同表情的模式和特征,實(shí)現(xiàn)準(zhǔn)確的表情分類C.表情識(shí)別系統(tǒng)需要考慮光照、頭部姿態(tài)和遮擋等因素的影響D.表情識(shí)別可以準(zhǔn)確地識(shí)別出所有細(xì)微和復(fù)雜的表情,不受個(gè)體差異和文化背景的影響18、在計(jì)算機(jī)視覺的醫(yī)學(xué)圖像分析中,例如對(duì)腫瘤的檢測(cè)和分割。假設(shè)醫(yī)學(xué)圖像的質(zhì)量較差,存在噪聲和偽影,以下哪種預(yù)處理方法可能有助于提高后續(xù)分析的準(zhǔn)確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉(zhuǎn)19、在計(jì)算機(jī)視覺的應(yīng)用中,人臉識(shí)別是一個(gè)常見的任務(wù)。假設(shè)一個(gè)公司要建立一個(gè)門禁系統(tǒng),通過(guò)人臉識(shí)別來(lái)允許員工進(jìn)入。為了提高人臉識(shí)別的準(zhǔn)確性和魯棒性,以下哪種技術(shù)通常會(huì)被采用?()A.基于幾何特征的人臉識(shí)別B.基于模板匹配的人臉識(shí)別C.基于深度學(xué)習(xí)的人臉識(shí)別,結(jié)合多模態(tài)數(shù)據(jù)D.基于顏色特征的人臉識(shí)別20、在計(jì)算機(jī)視覺的行人重識(shí)別任務(wù)中,即在不同攝像頭拍攝的圖像中識(shí)別出同一個(gè)行人,假設(shè)行人的姿態(tài)和服裝發(fā)生了較大變化,以下哪種特征可能具有更強(qiáng)的魯棒性?()A.基于全局特征的描述B.基于局部特征的描述C.基于顏色特征的描述D.基于形狀特征的描述二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)簡(jiǎn)述圖像的中值濾波的作用。2、(本題5分)解釋計(jì)算機(jī)視覺在軌道交通中的作用。3、(本題5分)描述計(jì)算機(jī)視覺在山體滑坡監(jiān)測(cè)中的應(yīng)用。4、(本題5分)簡(jiǎn)述計(jì)算機(jī)視覺在電子制造中的元件檢測(cè)和定位。5、(本題5分)計(jì)算機(jī)視覺中如何實(shí)現(xiàn)車道線檢測(cè)?三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)分析蘋果公司的品牌視覺傳達(dá)設(shè)計(jì),包括標(biāo)志、包裝、廣告等方面。探討其簡(jiǎn)潔設(shè)計(jì)風(fēng)格的特點(diǎn)和優(yōu)勢(shì),以及如何在全球范圍內(nèi)建立起強(qiáng)大的品牌形象。2、(本題5分)分析某文化機(jī)構(gòu)的年度報(bào)告設(shè)計(jì),觀察其如何通過(guò)數(shù)據(jù)可視化和圖文排版,清晰展示機(jī)構(gòu)的工作成果和發(fā)展規(guī)劃。3、(本題5分)剖析某烘焙教室的室內(nèi)裝修和教學(xué)材料設(shè)計(jì),探討如何通過(guò)溫馨、有趣的視覺元素激發(fā)學(xué)員的學(xué)習(xí)興趣。4、(本題5分)以某品牌的戶外廣告創(chuàng)意設(shè)計(jì)為例,分析其在畫面設(shè)計(jì)、文

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論