龍巖市重點(diǎn)中學(xué)2025屆高考臨考沖刺數(shù)學(xué)試卷含解析_第1頁(yè)
龍巖市重點(diǎn)中學(xué)2025屆高考臨考沖刺數(shù)學(xué)試卷含解析_第2頁(yè)
龍巖市重點(diǎn)中學(xué)2025屆高考臨考沖刺數(shù)學(xué)試卷含解析_第3頁(yè)
龍巖市重點(diǎn)中學(xué)2025屆高考臨考沖刺數(shù)學(xué)試卷含解析_第4頁(yè)
龍巖市重點(diǎn)中學(xué)2025屆高考臨考沖刺數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

龍巖市重點(diǎn)中學(xué)2025屆高考臨考沖刺數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.以,為直徑的圓的方程是A. B.C. D.2.復(fù)數(shù)的共軛復(fù)數(shù)記作,已知復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),復(fù)數(shù):滿足.則等于()A. B. C. D.3.一個(gè)正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()A.16 B.12 C.8 D.64.在中,角、、所對(duì)的邊分別為、、,若,則()A. B. C. D.5.公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為()A.米 B.米C.米 D.米6.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學(xué)成績(jī)X近似服從正態(tài)分布,且.從中隨機(jī)抽取參加此次考試的學(xué)生500名,估計(jì)理科數(shù)學(xué)成績(jī)不低于110分的學(xué)生人數(shù)約為()A.40 B.60 C.80 D.1007.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.8.已知函數(shù),其中,,其圖象關(guān)于直線對(duì)稱,對(duì)滿足的,,有,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,則函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.9.已知集合,,則A. B.C. D.10.在等差數(shù)列中,,,若(),則數(shù)列的最大值是()A. B.C.1 D.311.某高中高三(1)班為了沖刺高考,營(yíng)造良好的學(xué)習(xí)氛圍,向班內(nèi)同學(xué)征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細(xì)節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰(shuí)寫的,班主任對(duì)三人進(jìn)行了問(wèn)話,得到回復(fù)如下:小王說(shuō):“入班即靜”是我寫的;小董說(shuō):“天道酬勤”不是小王寫的,就是我寫的;小李說(shuō):“細(xì)節(jié)決定成敗”不是我寫的.若三人的說(shuō)法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李12.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關(guān)于點(diǎn)(2,1)對(duì)稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.圓心在曲線上的圓中,存在與直線相切且面積為的圓,則當(dāng)取最大值時(shí),該圓的標(biāo)準(zhǔn)方程為______.14.三棱柱中,,側(cè)棱底面,且三棱柱的側(cè)面積為.若該三棱柱的頂點(diǎn)都在同一個(gè)球的表面上,則球的表面積的最小值為_____.15.已知橢圓:的左,右焦點(diǎn)分別為,,過(guò)的直線交橢圓于,兩點(diǎn),若,且的三邊長(zhǎng),,成等差數(shù)列,則的離心率為__________.16.已知x,y>0,且,則x+y的最小值為_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(Ⅰ)判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù),并證明;(Ⅱ)函數(shù)在區(qū)間上的極值點(diǎn)從小到大分別為,,證明:18.(12分)已知函數(shù).(1)解不等式;(2)若,,,求證:.19.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).(1)證明:平面.(2)求直線與平面所成角的正弦值.20.(12分)一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對(duì)一塊地的個(gè)坑進(jìn)行播種,每個(gè)坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立.對(duì)每一個(gè)坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.(1)當(dāng)取何值時(shí),有3個(gè)坑要補(bǔ)播種的概率最大?最大概率為多少?(2)當(dāng)時(shí),用表示要補(bǔ)播種的坑的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.21.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.22.(10分)表示,中的最大值,如,己知函數(shù),.(1)設(shè),求函數(shù)在上的零點(diǎn)個(gè)數(shù);(2)試探討是否存在實(shí)數(shù),使得對(duì)恒成立?若存在,求的取值范圍;若不存在,說(shuō)明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

設(shè)圓的標(biāo)準(zhǔn)方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,由題意得圓心為,的中點(diǎn),根據(jù)中點(diǎn)坐標(biāo)公式可得,,又,所以圓的標(biāo)準(zhǔn)方程為:,化簡(jiǎn)整理得,所以本題答案為A.【點(diǎn)睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標(biāo)準(zhǔn)方程,建立方程組,屬于基礎(chǔ)題.2、A【解析】

根據(jù)復(fù)數(shù)的幾何意義得出復(fù)數(shù),進(jìn)而得出,由得出可計(jì)算出,由此可計(jì)算出.【詳解】由于復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),,則,,,因此,.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算,考查了復(fù)數(shù)的坐標(biāo)表示、共軛復(fù)數(shù)以及復(fù)數(shù)的除法,考查計(jì)算能力,屬于基礎(chǔ)題.3、B【解析】

根據(jù)正三棱柱的主視圖,以及長(zhǎng)度,可知該幾何體的底面正三角形的邊長(zhǎng),然后根據(jù)矩形的面積公式,可得結(jié)果.【詳解】由題可知:該幾何體的底面正三角形的邊長(zhǎng)為2所以該正三棱柱的三個(gè)側(cè)面均為邊長(zhǎng)為2的正方形,所以該正三棱柱的側(cè)面積為故選:B【點(diǎn)睛】本題考查正三棱柱側(cè)面積的計(jì)算以及三視圖的認(rèn)識(shí),關(guān)鍵在于求得底面正三角形的邊長(zhǎng),掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎(chǔ)題.4、D【解析】

利用余弦定理角化邊整理可得結(jié)果.【詳解】由余弦定理得:,整理可得:,.故選:.【點(diǎn)睛】本題考查余弦定理邊角互化的應(yīng)用,屬于基礎(chǔ)題.5、D【解析】

根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.6、D【解析】

由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績(jī)X近似服從正態(tài)分布,則正態(tài)分布曲線的對(duì)稱軸為,根據(jù)正態(tài)分布曲線的對(duì)稱性,求得,所以該市某校有500人中,估計(jì)該校數(shù)學(xué)成績(jī)不低于110分的人數(shù)為人,故選:.【點(diǎn)睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學(xué)生分析問(wèn)題的能力,難度容易.7、B【解析】

奇函數(shù)滿足定義域關(guān)于原點(diǎn)對(duì)稱且,在上即可.【詳解】A:因?yàn)槎x域?yàn)?,所以不可能時(shí)奇函數(shù),錯(cuò)誤;B:定義域關(guān)于原點(diǎn)對(duì)稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點(diǎn)對(duì)稱,且滿足奇函數(shù),,在上,因?yàn)椋栽谏喜皇窃龊瘮?shù),錯(cuò)誤;D:定義域關(guān)于原點(diǎn)對(duì)稱,且,滿足奇函數(shù),在上很明顯存在變號(hào)零點(diǎn),所以在上不是增函數(shù),錯(cuò)誤;故選:B【點(diǎn)睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點(diǎn)對(duì)稱,屬于簡(jiǎn)單題目.8、B【解析】

根據(jù)已知得到函數(shù)兩個(gè)對(duì)稱軸的距離也即是半周期,由此求得的值,結(jié)合其對(duì)稱軸,求得的值,進(jìn)而求得解析式.根據(jù)圖像變換的知識(shí)求得的解析式,再利用三角函數(shù)求單調(diào)區(qū)間的方法,求得的單調(diào)遞減區(qū)間.【詳解】解:已知函數(shù),其中,,其圖像關(guān)于直線對(duì)稱,對(duì)滿足的,,有,∴.再根據(jù)其圖像關(guān)于直線對(duì)稱,可得,.∴,∴.將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度得到函數(shù)的圖像.令,求得,則函數(shù)的單調(diào)遞減區(qū)間是,,故選B.【點(diǎn)睛】本小題主要考查三角函數(shù)圖像與性質(zhì)求函數(shù)解析式,考查三角函數(shù)圖像變換,考查三角函數(shù)單調(diào)區(qū)間的求法,屬于中檔題.9、D【解析】

因?yàn)?,所以,,故選D.10、D【解析】

在等差數(shù)列中,利用已知可求得通項(xiàng)公式,進(jìn)而,借助函數(shù)的的單調(diào)性可知,當(dāng)時(shí),取最大即可求得結(jié)果.【詳解】因?yàn)?,所以,即,又,所以公差,所以,即,因?yàn)楹瘮?shù),在時(shí),單調(diào)遞減,且;在時(shí),單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,考查數(shù)列與函數(shù)的關(guān)系,借助函數(shù)單調(diào)性研究數(shù)列最值問(wèn)題,難度較易.11、D【解析】

根據(jù)題意,分別假設(shè)一個(gè)正確,推理出與假設(shè)不矛盾,即可得出結(jié)論.【詳解】解:由題意知,若只有小王的說(shuō)法正確,則小王對(duì)應(yīng)“入班即靜”,而否定小董說(shuō)法后得出:小王對(duì)應(yīng)“天道酬勤”,則矛盾;若只有小董的說(shuō)法正確,則小董對(duì)應(yīng)“天道酬勤”,否定小李的說(shuō)法后得出:小李對(duì)應(yīng)“細(xì)節(jié)決定成敗”,所以剩下小王對(duì)應(yīng)“入班即靜”,但與小王的錯(cuò)誤的說(shuō)法矛盾;若小李的說(shuō)法正確,則“細(xì)節(jié)決定成敗”不是小李的,則否定小董的說(shuō)法得出:小王對(duì)應(yīng)“天道酬勤”,所以得出“細(xì)節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【點(diǎn)睛】本題考查推理證明的實(shí)際應(yīng)用.12、C【解析】

根據(jù)對(duì)稱性即可求出答案.【詳解】解:∵點(diǎn)(5,f(5))與點(diǎn)(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關(guān)于點(diǎn)(2,1)對(duì)稱,所以f(5)+f(﹣1)=2,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的對(duì)稱性的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意可得圓的面積求出圓的半徑,由圓心在曲線上,設(shè)圓的圓心坐標(biāo),到直線的距離等于半徑,再由均值不等式可得的最大值時(shí)圓心的坐標(biāo),進(jìn)而求出圓的標(biāo)準(zhǔn)方程.【詳解】設(shè)圓的半徑為,由題意可得,所以,由題意設(shè)圓心,由題意可得,由直線與圓相切可得,所以,而,,所以,即,解得,所以的最大值為2,當(dāng)且僅當(dāng)時(shí)取等號(hào),可得,所以圓心坐標(biāo)為:,半徑為,所以圓的標(biāo)準(zhǔn)方程為:.故答案為:.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系及均值不等式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意驗(yàn)正等號(hào)成立的條件.14、【解析】

分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設(shè)棱柱的底面邊長(zhǎng)為,高為,則三棱柱的側(cè)面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設(shè),∴三棱柱的側(cè)面積為∴又外接球半徑∴外接球表面積.故答案為:【點(diǎn)睛】考查學(xué)生對(duì)幾何體的正確認(rèn)識(shí),能通過(guò)題意了解到題目傳達(dá)的意思,培養(yǎng)學(xué)生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題15、【解析】

設(shè),,,根據(jù)勾股定理得出,而由橢圓的定義得出的周長(zhǎng)為,有,便可求出和的關(guān)系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長(zhǎng),,成等差數(shù)列,設(shè),,,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長(zhǎng)為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點(diǎn)睛】本題考查橢圓的離心率以及橢圓的定義的應(yīng)用,考查計(jì)算能力.16、1【解析】

處理變形x+y=x()+y結(jié)合均值不等式求解最值.【詳解】x,y>0,且,則x+y=x()+y1,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí)x=4,y=2,取得最小值1.故答案為:1【點(diǎn)睛】此題考查利用均值不等式求解最值,關(guān)鍵在于熟練掌握均值不等式的適用條件,注意考慮等號(hào)成立的條件.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).見解析(Ⅱ)見解析【解析】

(Ⅰ)根據(jù)題意,,利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性,分類討論在區(qū)間的單調(diào)區(qū)間和極值,進(jìn)而研究零點(diǎn)個(gè)數(shù)問(wèn)題;(Ⅱ)求導(dǎo),,由于在區(qū)間上的極值點(diǎn)從小到大分別為,,求出,利用導(dǎo)數(shù)結(jié)合單調(diào)性和極值點(diǎn),即可證明出.【詳解】解:(Ⅰ),,當(dāng)時(shí),,,在區(qū)間上單調(diào)遞減,,在區(qū)間上無(wú)零點(diǎn);當(dāng)時(shí),,在區(qū)間上單調(diào)遞增,,在區(qū)間上唯一零點(diǎn);當(dāng)時(shí),,,在區(qū)間上單調(diào)遞減,,;在區(qū)間上唯一零點(diǎn);綜上可知,函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).(Ⅱ),,由(Ⅰ)知在無(wú)極值點(diǎn);在有極小值點(diǎn),即為;在有極大值點(diǎn),即為,由,即,,2…,,,,,,以及的單調(diào)性,,,,,由函數(shù)在單調(diào)遞增,得,,由在單調(diào)遞減,得,即,故.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,通過(guò)導(dǎo)數(shù)解決函數(shù)零點(diǎn)個(gè)數(shù)問(wèn)題和證明不等式,考查轉(zhuǎn)化思想和計(jì)算能力.18、(1);(2)證明見解析.【解析】

(1)分、、三種情況解不等式,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號(hào)即可,由此證明出所證不等式成立.【詳解】(1).當(dāng)時(shí),由,解得,此時(shí);當(dāng)時(shí),不成立;當(dāng)時(shí),由,解得,此時(shí).綜上所述,不等式的解集為;(2)要證,即證,因?yàn)?,,所以,,?所以,.故所證不等式成立.【點(diǎn)睛】本題考查絕對(duì)值不等式的求解,同時(shí)也考查了利用分析法和作差法證明不等式,考查分類討論思想以及推理能力,屬于中等題.19、(1)證明見解析(2)【解析】

(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標(biāo)系,求出平面的法向量與,坐標(biāo)代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因?yàn)槠矫?,所以平面平?易知,且為的中點(diǎn),所以,所以平面.(2)解:由(1)可知,,且四邊形為正方形.設(shè)的中點(diǎn)為,以為原點(diǎn),以,,所在直線分別為,,軸,建立空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的法向量為,由得取.設(shè)直線與平面所成的角為,所以,所以直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面垂直的證明,直線與平面所成的角,要求一定的空間想象能力、運(yùn)算求解能力和推理論證能力,屬于基礎(chǔ)題.20、(1)當(dāng)或時(shí),有3個(gè)坑要補(bǔ)播種的概率最大,最大概率為;(2)見解析.【解析】

(1)將有3個(gè)坑需要補(bǔ)種表示成n的函數(shù),考查函數(shù)隨n的變化情況,即可得到n為何值時(shí)有3個(gè)坑要補(bǔ)播種的概率最大.(2)n=1時(shí),X的所有可能的取值為0,1,2,3,1.分別計(jì)算出每個(gè)變量對(duì)應(yīng)的概率,列出分布列,求期望即可.【詳解】(1)對(duì)一個(gè)坑而言,要補(bǔ)播種的概率,有3個(gè)坑要補(bǔ)播種的概率為.欲使最大,只需,解得,因?yàn)椋援?dāng)時(shí),;當(dāng)時(shí),;所以當(dāng)或時(shí),有3個(gè)坑要補(bǔ)播種的概率最大,最大概率為.(2)由已知,的可能取值為0,1,2,3,1.,所以的分布列為01231的數(shù)學(xué)期望.【點(diǎn)睛】本題考查了古典概型的概率求法,離散型隨機(jī)變量的概率分布,二項(xiàng)分布,主要考查簡(jiǎn)單的計(jì)算,屬于中檔題.21、(1);(2)【解析】

(1)分類討論去絕對(duì)值號(hào),即可求解;(2)原不等式可轉(zhuǎn)化為在R上恒成立,分別求函數(shù)與的最小值,根據(jù)能同時(shí)成立,可得的最小值,即可求解.【詳解】(1)①當(dāng)時(shí),不等式可化為,得,無(wú)解;②當(dāng)-2≤x≤1時(shí),不等式可化為得x>0,故0<x≤1;③當(dāng)x>1時(shí),不等式可化為,得x<2,故1<x<2.綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當(dāng)時(shí),又當(dāng)時(shí),取得最小值,且又所以當(dāng)時(shí),與同時(shí)取得最小值.所以所以,即實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題主要考查了含絕對(duì)值不等式的解法,分類討論,函數(shù)的最值,屬于中檔題.22、(1)個(gè);(1)存在,.【解析】試題分析:(1)設(shè),對(duì)其求導(dǎo),及最小值,從而得到的解析式,進(jìn)一步求值域即可;(1)分別對(duì)和兩種情況進(jìn)行討論,得到的解析

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論