北京交通大學《人機交互技術(shù)》2022-2023學年第一學期期末試卷_第1頁
北京交通大學《人機交互技術(shù)》2022-2023學年第一學期期末試卷_第2頁
北京交通大學《人機交互技術(shù)》2022-2023學年第一學期期末試卷_第3頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記。…………密………………封………………線…………第1頁,共1頁北京交通大學

《人機交互技術(shù)》2022-2023學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的發(fā)展中,模型壓縮和優(yōu)化技術(shù)有助于在資源受限的設備上部署模型。假設要將一個大型的人工智能模型部署到移動設備上,以下關(guān)于模型壓縮和優(yōu)化的描述,哪一項是不正確的?()A.可以采用剪枝、量化等方法減少模型的參數(shù)數(shù)量和計算量B.模型壓縮可能會導致一定程度的性能損失,但可以通過優(yōu)化算法來彌補C.模型壓縮和優(yōu)化只適用于深度學習模型,對傳統(tǒng)機器學習模型無效D.需要在模型性能和資源消耗之間進行平衡,找到最優(yōu)的解決方案2、在人工智能的知識圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。假設要為一個特定領(lǐng)域構(gòu)建知識圖譜,以下關(guān)于數(shù)據(jù)來源的選擇,哪一項是最關(guān)鍵的?()A.只選擇權(quán)威的學術(shù)文獻和研究報告,確保知識的準確性B.廣泛收集互聯(lián)網(wǎng)上的各種信息,包括社交媒體和博客等C.結(jié)合行業(yè)專家的經(jīng)驗和知識,以及相關(guān)的數(shù)據(jù)庫和文檔D.隨機選擇一些數(shù)據(jù)來源,不進行篩選和評估3、假設要開發(fā)一個能夠輔助醫(yī)生進行疾病診斷的人工智能系統(tǒng),需要整合多種醫(yī)療數(shù)據(jù),如病歷、影像、檢驗報告等。在這個過程中,以下哪個環(huán)節(jié)可能是最具挑戰(zhàn)性的?()A.數(shù)據(jù)的清洗和預處理B.多模態(tài)數(shù)據(jù)的融合C.模型的訓練和優(yōu)化D.模型的解釋和可信賴性4、在人工智能的模型部署階段,需要考慮許多實際問題。假設要將一個訓練好的人工智能模型部署到移動設備上,以下關(guān)于模型壓縮和優(yōu)化的方法,哪一項是不正確的?()A.采用量化技術(shù),減少模型的參數(shù)精度B.進行模型剪枝,去除不重要的連接和神經(jīng)元C.直接將訓練好的模型原封不動地部署到移動設備上,不進行任何優(yōu)化D.使用知識蒸餾技術(shù),將復雜模型的知識遷移到較小的模型中5、在人工智能的自然語言生成中,故事生成是一個富有創(chuàng)意的任務。假設我們要讓計算機生成一個富有想象力的童話故事,以下關(guān)于故事生成的挑戰(zhàn),哪一項是不正確的?()A.創(chuàng)造新穎和有趣的情節(jié)B.保持故事的邏輯連貫性C.符合特定的文化和社會背景D.故事生成不需要考慮讀者的喜好和期望6、在人工智能的發(fā)展中,倫理和社會問題日益受到關(guān)注。假設一個人工智能系統(tǒng)被用于招聘決策,以下關(guān)于這種應用可能帶來的問題,正確的是:()A.人工智能系統(tǒng)能夠完全消除招聘中的人為偏見,保證公平公正B.由于數(shù)據(jù)偏差和算法不透明,可能導致不公平的招聘結(jié)果和歧視C.企業(yè)無需對人工智能招聘系統(tǒng)的決策負責,因為是算法自動做出的決策D.人工智能招聘系統(tǒng)不會對求職者的個人隱私造成任何威脅7、人工智能中的聯(lián)邦學習技術(shù)旨在保護數(shù)據(jù)隱私的同時實現(xiàn)模型訓練。假設多個機構(gòu)想要聯(lián)合訓練一個人工智能模型,同時保護各自的數(shù)據(jù)隱私,以下關(guān)于聯(lián)邦學習的描述,正確的是:()A.聯(lián)邦學習可以在不共享原始數(shù)據(jù)的情況下,直接合并各機構(gòu)的模型參數(shù)進行訓練B.聯(lián)邦學習過程中不存在通信開銷和安全風險C.采用加密技術(shù)和模型參數(shù)交換的方式,聯(lián)邦學習能夠在保護數(shù)據(jù)隱私的前提下協(xié)同訓練模型D.聯(lián)邦學習只適用于小規(guī)模的數(shù)據(jù)和簡單的模型,對于大規(guī)模和復雜的任務不適用8、人工智能中的自動推理技術(shù)旨在讓計算機自動進行邏輯推理和問題求解。以下關(guān)于自動推理的說法,不正確的是()A.自動推理可以應用于定理證明、規(guī)劃和診斷等領(lǐng)域B.基于規(guī)則的推理和基于模型的推理是自動推理的常見方法C.自動推理系統(tǒng)能夠處理所有復雜的邏輯問題,無需人類干預D.不確定性推理和非單調(diào)推理是自動推理中的難點和研究熱點9、在人工智能的圖像分割任務中,假設要將一張醫(yī)學圖像中的腫瘤區(qū)域準確分割出來,以下關(guān)于選擇分割算法的考慮,哪一項是最關(guān)鍵的?()A.算法的計算復雜度,以確保能夠快速處理大量圖像B.算法在其他領(lǐng)域的應用效果,而不是針對醫(yī)學圖像的特定性能C.算法是否能夠利用多模態(tài)的醫(yī)學圖像數(shù)據(jù),如CT、MRI等D.算法是否具有漂亮的可視化效果,而不是分割的準確性10、人工智能在金融領(lǐng)域的應用越來越廣泛,如風險評估、投資決策和欺詐檢測等。以下關(guān)于人工智能在金融領(lǐng)域應用的描述,不準確的是()A.可以通過分析大量的金融數(shù)據(jù),更準確地評估風險和預測市場趨勢B.能夠為投資者提供個性化的投資建議,優(yōu)化投資組合C.人工智能在金融領(lǐng)域的應用完全消除了風險和錯誤,保障了金融交易的絕對安全D.金融機構(gòu)在采用人工智能技術(shù)時,需要考慮合規(guī)性和監(jiān)管要求11、在一個利用人工智能進行能源管理的系統(tǒng)中,例如優(yōu)化建筑物的能源消耗或電網(wǎng)的調(diào)度,以下哪個方面的考慮可能是至關(guān)重要的?()A.實時數(shù)據(jù)采集和處理B.精準的預測模型C.多目標優(yōu)化策略D.以上都是12、人工智能在物流領(lǐng)域的應用能夠提高物流效率和服務質(zhì)量。以下關(guān)于人工智能在物流應用的敘述,不正確的是()A.可以通過路徑規(guī)劃算法優(yōu)化貨物運輸路線,降低運輸成本B.利用圖像識別技術(shù)實現(xiàn)貨物的自動分揀和識別C.人工智能在物流領(lǐng)域的應用面臨數(shù)據(jù)安全和隱私保護等挑戰(zhàn)D.物流領(lǐng)域?qū)θ斯ぶ悄芗夹g(shù)的需求不高,傳統(tǒng)的管理方法已經(jīng)足夠滿足需求13、人工智能在金融領(lǐng)域的應用包括風險評估、投資決策和欺詐檢測等。假設一個銀行正在使用人工智能進行風險評估,以下關(guān)于金融領(lǐng)域人工智能應用的描述,正確的是:()A.人工智能可以完全取代人類專家的判斷,獨立做出準確的風險評估和投資決策B.數(shù)據(jù)的質(zhì)量和完整性對人工智能在金融領(lǐng)域的應用效果沒有影響C.結(jié)合人工智能模型和人類專家的經(jīng)驗,可以更有效地進行金融風險評估和管理D.人工智能在金融領(lǐng)域的應用不存在任何風險和監(jiān)管挑戰(zhàn)14、假設要構(gòu)建一個能夠自主學習并改進其性能的人工智能圖像識別系統(tǒng),用于識別不同種類的動物。在訓練過程中,需要處理大量的圖像數(shù)據(jù),以下哪種機器學習算法可能最為適合?()A.決策樹B.支持向量機C.深度學習中的卷積神經(jīng)網(wǎng)絡D.樸素貝葉斯15、在人工智能的自動駕駛道德決策問題中,假設自動駕駛汽車面臨一個無法避免的碰撞場景,以下關(guān)于道德決策的描述,正確的是:()A.可以制定一套通用的道德規(guī)則,讓自動駕駛汽車在所有情況下遵循B.道德決策應該完全由汽車制造商決定,用戶沒有參與的權(quán)利C.不同的文化和價值觀可能導致對自動駕駛道德決策的不同看法D.自動駕駛汽車的道德決策不會受到法律和社會輿論的影響二、簡答題(本大題共3個小題,共15分)1、(本題5分)說明如何選擇合適的機器學習算法。2、(本題5分)簡述信息抽取在自然語言處理中的應用。3、(本題5分)解釋人工智能在風險管理中的應用。三、操作題(本大題共5個小題,共25分)1、(本題5分)運用PyTorch構(gòu)建一個基于注意力機制的圖像描述生成模型。根據(jù)輸入的圖像生成準確、生動的文字描述,評估描述的質(zhì)量。2、(本題5分)運用Python中的Scikit-learn庫,實現(xiàn)譜聚類算法對圖像數(shù)據(jù)進行分割,比較不同參數(shù)設置下的分割效果。3、(本題5分)使用Python的PyTorch框架,搭建一個圖卷積神經(jīng)網(wǎng)絡(GCN)模型,對社交網(wǎng)絡中的節(jié)點分類問題進行處理。分析不同的圖卷積層結(jié)構(gòu)和參數(shù)對分類效果的影響。4、(本題5分)利用Python的OpenCV庫,實現(xiàn)對圖像的邊緣檢測。加載一張圖像,使用Canny邊緣檢測算法處理圖像,展示處理前后的圖像效果,并分析邊緣檢測的效果和參數(shù)的影響。5、(本題5分)利用Python的TensorFlow庫,構(gòu)建一個深度強化學習模型,讓智能體在一個物流配送環(huán)境中學習最優(yōu)的配送路徑規(guī)劃策略??紤]不同的交通

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論