版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
天津市七校聯(lián)考2025屆高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.2.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.23.已知函數(shù)在上有兩個零點(diǎn),則的取值范圍是()A. B. C. D.4.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①以為直徑的圓與拋物線準(zhǔn)線相離;②直線與直線的斜率乘積為;③設(shè)過點(diǎn),,的圓的圓心坐標(biāo)為,半徑為,則.其中,所有正確判斷的序號是()A.①② B.①③ C.②③ D.①②③5.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.6.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.7.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)8.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.9.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.210.已知是雙曲線的兩個焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于兩點(diǎn),若,則的內(nèi)切圓半徑為()A. B. C. D.11.設(shè)是等差數(shù)列的前n項和,且,則()A. B. C.1 D.212.設(shè)a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.如圖,是圓的直徑,弦的延長線相交于點(diǎn)垂直的延長線于點(diǎn).求證:14.二項式的展開式中項的系數(shù)為_____.15.點(diǎn)到直線的距離為________16.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務(wù),每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當(dāng)甲、乙兩人都參加時,他們參加社區(qū)服務(wù)的日期不相鄰,那么不同的安排種數(shù)為______________.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長度的極坐標(biāo)系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;(2)若曲線上恰好存在三個不同的點(diǎn)到曲線的距離相等,求這三個點(diǎn)的極坐標(biāo).18.(12分)如圖,在四棱錐中,平面平面,.(Ⅰ)求證:平面;(Ⅱ)若銳二面角的余弦值為,求直線與平面所成的角.19.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點(diǎn),為棱上一點(diǎn),若平面.(1)求線段的長;(2)求二面角的余弦值.20.(12分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(1)求直線的極坐標(biāo)方程;(2)若直線與曲線交于,兩點(diǎn),求的面積.21.(12分)定義:若數(shù)列滿足所有的項均由構(gòu)成且其中有個,有個,則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項,則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項,則存在多少正整數(shù)對使得且的概率為.22.(10分)健身館某項目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會員優(yōu)惠活動:具體收費(fèi)標(biāo)準(zhǔn)如下:現(xiàn)隨機(jī)抽取了100為會員統(tǒng)計它們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:假設(shè)該項目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:(1)估計1位會員至少消費(fèi)兩次的概率(2)某會員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤;(3)假設(shè)每個會員每星期最多消費(fèi)4次,以事件發(fā)生的頻率作為相應(yīng)事件的概率,從會員中隨機(jī)抽取兩位,記從這兩位會員的消費(fèi)獲得的平均利潤之差的絕對值為,求的分布列及數(shù)學(xué)期望
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
運(yùn)用輔助角公式,化簡函數(shù)的解析式,由對稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),,所以,當(dāng)時,的最小值,故選D.【點(diǎn)睛】本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對稱性與最值是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.2、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時,有最大值為,即,故..當(dāng),即時等號成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.3、C【解析】
對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點(diǎn)處的函數(shù)值進(jìn)行判斷求解.【詳解】∵,.當(dāng)時,,在上單調(diào)遞增,不合題意.當(dāng)時,,在上單調(diào)遞減,也不合題意.當(dāng)時,則時,,在上單調(diào)遞減,時,,在上單調(diào)遞增,又,所以在上有兩個零點(diǎn),只需即可,解得.綜上,的取值范圍是.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.4、D【解析】
對于①,利用拋物線的定義,利用可判斷;對于②,設(shè)直線的方程為,與拋物線聯(lián)立,用坐標(biāo)表示直線與直線的斜率乘積,即可判斷;對于③,將代入拋物線的方程可得,,從而,,利用韋達(dá)定理可得,再由,可用m表示,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,可得a,即可判斷.【詳解】如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以①正確.由題意可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據(jù)拋物線的對稱性可知,,兩點(diǎn)關(guān)于軸對稱,所以過點(diǎn),,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.5、B【解析】
設(shè)正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內(nèi),使得每條棱恰好為正方體的面對角線,根據(jù)正方體和正四面體的外接球為同一個球計算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內(nèi),設(shè)正方體的棱長為a,如圖所示,設(shè)正四面體ABCD的外接球的半徑為R,則,得.因為正四面體ABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.【點(diǎn)睛】本題考查球的內(nèi)接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來,考查計算能力,屬于中檔題.6、A【解析】
由的解集,可知及,進(jìn)而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因為,所以的解集為,故選:A.【點(diǎn)睛】本題考查一元一次不等式、一元二次不等式的解集,考查學(xué)生的計算求解能力與推理能力,屬于基礎(chǔ)題.7、C【解析】
根據(jù)并集的求法直接求出結(jié)果.【詳解】∵,∴,故選C.【點(diǎn)睛】考查并集的求法,屬于基礎(chǔ)題.8、A【解析】
由正弦定理化簡已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點(diǎn)睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.9、C【解析】
首先判斷出是周期為的周期函數(shù),由此求得所求表達(dá)式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點(diǎn)睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.10、B【解析】
首先由求得雙曲線的方程,進(jìn)而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設(shè)的內(nèi)切圓的半徑為,則,故選:B【點(diǎn)睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.11、C【解析】
利用等差數(shù)列的性質(zhì)化簡已知條件,求得的值.【詳解】由于等差數(shù)列滿足,所以,,.故選:C【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.12、A【解析】
根據(jù)題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當(dāng)"a=b當(dāng)logab=log故選:A.【點(diǎn)睛】本題考查了充分不必要條件,意在考查學(xué)生的計算能力和推斷能力.二、填空題:本題共4小題,每小題5分,共20分。13、證明見解析.【解析】試題分析:四點(diǎn)共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因為為圓的直徑,所以,又,則四點(diǎn)共圓,所以.又△∽△,所以,即,∴.14、15【解析】
由題得,,令,解得,代入可得展開式中含x6項的系數(shù).【詳解】由題得,,令,解得,所以二項式的展開式中項的系數(shù)為.故答案為:15【點(diǎn)睛】本題主要考查了二項式定理的應(yīng)用,考查了利用通項公式去求展開式中某項的系數(shù)問題.15、2【解析】
直接根據(jù)點(diǎn)到直線的距離公式即可求出?!驹斀狻恳罁?jù)點(diǎn)到直線的距離公式,點(diǎn)到直線的距離為?!军c(diǎn)睛】本題主要考查點(diǎn)到直線的距離公式的應(yīng)用。16、5040.【解析】分兩類,一類是甲乙都參加,另一類是甲乙中選一人,方法數(shù)為。填5040.【點(diǎn)睛】利用排列組合計數(shù)時,關(guān)鍵是正確進(jìn)行分類和分步,分類時要注意不重不漏.在本題中,甲與乙是兩個特殊元素,對于特殊元素“優(yōu)先法”,所以有了分類。本題還涉及不相鄰問題,采用“插空法”。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2),,.【解析】
(1)把曲線的參數(shù)方程與曲線的極坐標(biāo)方程分別轉(zhuǎn)化為直角坐標(biāo)方程;(2)利用圖象求出三個點(diǎn)的極徑與極角.【詳解】解:(1)由消去參數(shù)得,即曲線的普通方程為,又由得即為,即曲線的平面直角坐標(biāo)方程為(2)∵圓心到曲線:的距離,如圖所示,所以直線與圓的切點(diǎn)以及直線與圓的兩個交點(diǎn),即為所求.∵,則,直線的傾斜角為,即點(diǎn)的極角為,所以點(diǎn)的極角為,點(diǎn)的極角為,所以三個點(diǎn)的極坐標(biāo)為,,.【點(diǎn)睛】本題考查圓的參數(shù)方程和普通方程的轉(zhuǎn)化、直線極坐標(biāo)方程和直角坐標(biāo)方程的轉(zhuǎn)化,消去參數(shù)方程中的參數(shù),就可把參數(shù)方程化為普通方程,消去參數(shù)的常用方法有:①代入消元法;②加減消元法;③乘除消元法;④三角恒等式消元法,極坐標(biāo)方程化為直角坐標(biāo)方程,只要將和換成和即可.18、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由余弦定理解得,即可得到,由面面垂直的性質(zhì)可得平面,即可得到,從而得證;(Ⅱ)在平面中,過點(diǎn)作于點(diǎn),則平面,如圖所示建立空間直角坐標(biāo)系,設(shè),其中,利用空間向量法得到二面角的余弦,即可得到的關(guān)系,從而得解;【詳解】解:(Ⅰ)證明:在中,,解得,則,從而因為平面平面,平面平面所以平面,又因為平面,所以,因為,,平面,平面,所以平面;(Ⅱ)解:在平面中,過點(diǎn)作于點(diǎn),則平面,如圖所示建立空間直角坐標(biāo)系,設(shè),其中,則設(shè)平面的法向量為,則,即,令,則又平面的一個法向量,則從而,故則直線與平面所成的角為,大小為.【點(diǎn)睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法解決立體幾何問題,屬于中檔題.19、(1)(2)【解析】
(1)先證得,設(shè)與交于點(diǎn),在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)由題意,,設(shè)與交于點(diǎn),在中,可求得,則,可求得,則(2)以為原點(diǎn),方向為軸,方向為軸,方向為軸,建立空間直角坐標(biāo)系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設(shè)二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【點(diǎn)睛】本小題主要考查根據(jù)線面垂直求邊長,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)(2)【解析】
(1)先消去參數(shù),化為直角坐標(biāo)方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長和點(diǎn)到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標(biāo)方程為.(2)由,得,設(shè),兩點(diǎn)對應(yīng)的極分別為,,則,,所以,又點(diǎn)到直線的距離所以【點(diǎn)睛】本題主要考查參數(shù)方程、直角坐標(biāo)方程及極坐標(biāo)方程的轉(zhuǎn)化和直線與曲線的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.21、(1)16;(2)115.【解析】
(1)易得使得的情況只有“”,“”兩種,再根據(jù)組合的方法求解兩種情況分別的情況數(shù)再求和即可.(2)易得“”共有種,“”共有種.再根據(jù)古典概型的方法可知,利用組合數(shù)的計算公式可得,當(dāng)時根據(jù)題意有,共個;當(dāng)時求得,再根據(jù)換元根據(jù)整除的方法求解滿足的正整數(shù)對即可.【詳解】解:(1)三個數(shù)乘積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度在線借款合同電子簽名法律適用研究3篇
- 二零二五年度某IT服務(wù)公司與企業(yè)客戶就IT運(yùn)維服務(wù)合同2篇
- 二零二五年度加工承攬合同標(biāo)的加工要求和質(zhì)量標(biāo)準(zhǔn)3篇
- 二零二五年度城市廣場草坪承包與公共藝術(shù)合同3篇
- 二零二五年度基樁檢測與監(jiān)測系統(tǒng)合同3篇
- 2025年度安徽省勞動合同解除與賠償合同范本3篇
- 二零二五年度新型房產(chǎn)租賃及轉(zhuǎn)售一體化服務(wù)合同2篇
- 豆包制作課程設(shè)計
- 二零二五年度供水企業(yè)安全生產(chǎn)培訓(xùn)合同3篇
- 路基路面沉井課程設(shè)計
- 融資成本視角下的船舶融資租賃模式研究
- 感冒中醫(yī)理論知識課件
- 2023年希望杯數(shù)學(xué)培訓(xùn)100題-六年級(含答案)
- 一年級科學(xué)人教版總結(jié)回顧2
- 個人住房貸款提前還款月供及節(jié)省利息EXCEL計算
- 第五單元《圓》教材解析-人教版數(shù)學(xué)六年級上冊
- 患者突發(fā)昏迷應(yīng)急預(yù)案演練腳本-
- 智能機(jī)器人技術(shù)導(dǎo)論P(yáng)PT完整全套教學(xué)課件
- 危險性較大的分部分項工程清單 及安全管理措施
- 中職英語語文版(2023)基礎(chǔ)模塊1 Unit 1 The Joys of Vocational School 單元測試題(含答案)
- 最全-房屋市政工程安全生產(chǎn)標(biāo)準(zhǔn)化指導(dǎo)圖冊
評論
0/150
提交評論