高中數(shù)學(xué)復(fù)習(xí)專題06 立體幾何中的翻折問題(原卷版)_第1頁
高中數(shù)學(xué)復(fù)習(xí)專題06 立體幾何中的翻折問題(原卷版)_第2頁
高中數(shù)學(xué)復(fù)習(xí)專題06 立體幾何中的翻折問題(原卷版)_第3頁
高中數(shù)學(xué)復(fù)習(xí)專題06 立體幾何中的翻折問題(原卷版)_第4頁
高中數(shù)學(xué)復(fù)習(xí)專題06 立體幾何中的翻折問題(原卷版)_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第三篇立體幾何專題06立體幾何中的翻折問題常見考點(diǎn)考點(diǎn)一翻折問題典例1.如圖1五邊形中,,,,,將沿折到的位置,得到四棱錐,如圖2,點(diǎn)為線段的中點(diǎn),且平面.(1)求證:平面;(2)若直線與所成角的正切值為,求二面角余弦值.變式1-1.如圖,在中,,,,,,沿將點(diǎn)折至處,使得,點(diǎn)為的中點(diǎn).(1)證明:平面.(2)求二面角的余弦值.變式1-2.如圖,在等腰梯形ABCD中,,,,,AE為梯形ABCD的高,將沿AE折到的位置,使得.

(1)求證:平面ABCE;(2)求平面PBC與平面PAE所成二面角的余弦值.變式1-3.已知邊長為2的等邊(圖1),點(diǎn)和點(diǎn)分別是邊、上的中點(diǎn),將沿直線折到的位置,使得平面平面(圖2),此時點(diǎn)和點(diǎn)分別是邊、上的中點(diǎn).(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值.典例2.如圖1,在高為6的等腰梯形ABCD中,AB∥CD,且CD=6,AB=12,將它沿對稱軸OO1折起,使平面ADO1O⊥平面BCO1O,如圖2,點(diǎn)P為BC的中點(diǎn),點(diǎn)E在線段AB上(不同于A,B兩點(diǎn)),連接OE并延長至點(diǎn)Q,使AQ∥OB.(1)證明:OD⊥平面PAQ;(2)若BE=2AE,求二面角C-BQ-A的余弦值.變式2-1.如圖1,四邊形是正方形,四邊形和是菱形,,.分別沿,將四邊形和折起,使、重合于,、重合于,得到如圖2所示的幾何體.在圖2中,、分別是、的中點(diǎn).(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值.變式2-2.如圖,已知四邊形是邊長為的正方形,與相交于點(diǎn),為等邊三角形.現(xiàn)將沿折起到的位置,將沿折起到的位置,使得折后平面.(1)求證:平面;(2)求二面角的大?。兪?-3.如圖1,在矩形中,,,點(diǎn)、分別在線段、上,且,,現(xiàn)將沿折到的位置,連結(jié),,如圖2(1)證明:;(2)記平面與平面的交線為.若二面角為,求與平面所成角的正弦值.鞏固練習(xí)練習(xí)一翻折問題1.如圖1,在平面五邊形中,是等邊三角形.現(xiàn)將沿折起,記折后的點(diǎn)為,連接得到四棱錐,如圖2.(1)證明:;(2)若平面平面,求二面角的余弦值.2.如圖所示,在邊長為12的正方形中,點(diǎn)B,在線段上,且,,作,分別交、于點(diǎn)、,作,分別交、于點(diǎn)、,將該正方形沿BB1、CC1折疊,使得與重合,構(gòu)成如圖2所示的三棱柱.(1)試判斷直線AQ是否與平面平行,并說明理由;(2)求平面APQ與平面ABC所成二面角的余弦值.3.如圖,四邊形是一個邊長為2的菱形,且,現(xiàn)沿著將折到的位置,使得平面平面,,是線段,上的兩個動點(diǎn)(不含端點(diǎn)),且.(1)證明:平面;(2)求直線與平面所成的角的正弦值;(3)設(shè)平面與平面所成銳二面角為,當(dāng)時,求的值.4.如圖,正方形的邊長為2,的中點(diǎn)分別為,正方形沿著折起形成三棱柱,三棱柱中,,.(1)證明:當(dāng)時,求證:平面;(2)若二面角的余弦值為,求的值.5.如圖甲所示,在矩形ABCD中,,,為的中點(diǎn),沿AE將翻折,使D折至處,且二面角為直二面角(如圖乙).(1)求證:;(2)求平面與平面ECB所成角的正切值.6.如圖1,中,,,,D,E分別是,的中點(diǎn).把沿折至的位置,平面,連接,,F(xiàn)為線段的中點(diǎn),如圖2.(1)求證:平面;(2)當(dāng)三棱錐的體積為時,求直線與所成角的正切值.7.如圖是矩形和邊為直徑的半圓組成的平面圖形,將此圖形沿折疊,使平面垂直于半圓所在的平面,若點(diǎn)是折后圖形中半圓上異于的點(diǎn).(1)證明:;(2)若,且異面直線和所成的角為,求平面與平面所成的銳二面角的余弦值.8.如圖是由正方形和長方形組成的平面圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論