湖南文理學(xué)院《機(jī)器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁(yè)
湖南文理學(xué)院《機(jī)器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁(yè)
湖南文理學(xué)院《機(jī)器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁(yè)
湖南文理學(xué)院《機(jī)器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁(yè)
湖南文理學(xué)院《機(jī)器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線(xiàn)…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)湖南文理學(xué)院

《機(jī)器學(xué)習(xí)》2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、當(dāng)使用支持向量機(jī)(SVM)進(jìn)行分類(lèi)任務(wù)時(shí),如果數(shù)據(jù)不是線(xiàn)性可分的,通常會(huì)采用以下哪種方法()A.增加樣本數(shù)量B.降低維度C.使用核函數(shù)將數(shù)據(jù)映射到高維空間D.更換分類(lèi)算法2、在構(gòu)建一個(gè)用于圖像識(shí)別的卷積神經(jīng)網(wǎng)絡(luò)(CNN)時(shí),需要考慮許多因素。假設(shè)我們正在設(shè)計(jì)一個(gè)用于識(shí)別手寫(xiě)數(shù)字的CNN模型。以下關(guān)于CNN設(shè)計(jì)的描述,哪一項(xiàng)是不正確的?()A.增加卷積層的數(shù)量可以提取更復(fù)雜的圖像特征,提高識(shí)別準(zhǔn)確率B.較大的卷積核尺寸能夠捕捉更廣泛的圖像信息,有助于模型性能提升C.在卷積層后添加池化層可以減少特征數(shù)量,降低計(jì)算復(fù)雜度,同時(shí)保持主要特征D.使用合適的激活函數(shù)如ReLU可以引入非線(xiàn)性,增強(qiáng)模型的表達(dá)能力3、在強(qiáng)化學(xué)習(xí)中,智能體通過(guò)與環(huán)境交互來(lái)學(xué)習(xí)最優(yōu)策略。如果智能體在某個(gè)狀態(tài)下采取的行動(dòng)總是導(dǎo)致低獎(jiǎng)勵(lì),它應(yīng)該()A.繼續(xù)采取相同的行動(dòng),希望情況會(huì)改善B.隨機(jī)選擇其他行動(dòng)C.根據(jù)策略網(wǎng)絡(luò)的輸出選擇行動(dòng)D.調(diào)整策略以避免采取該行動(dòng)4、想象一個(gè)無(wú)人駕駛汽車(chē)的環(huán)境感知任務(wù),需要識(shí)別道路、車(chē)輛、行人等對(duì)象。以下哪種機(jī)器學(xué)習(xí)方法可能是最關(guān)鍵的?()A.目標(biāo)檢測(cè)算法,如FasterR-CNN或YOLO,能夠快速準(zhǔn)確地識(shí)別多個(gè)對(duì)象,但對(duì)小目標(biāo)檢測(cè)可能存在挑戰(zhàn)B.語(yǔ)義分割算法,對(duì)圖像進(jìn)行像素級(jí)的分類(lèi),但計(jì)算量較大C.實(shí)例分割算法,不僅區(qū)分不同類(lèi)別,還區(qū)分同一類(lèi)別中的不同個(gè)體,但模型復(fù)雜D.以上三種方法結(jié)合使用,根據(jù)具體場(chǎng)景和需求進(jìn)行選擇和優(yōu)化5、假設(shè)要預(yù)測(cè)一個(gè)時(shí)間序列數(shù)據(jù)中的突然變化點(diǎn),以下哪種方法可能是最合適的?()A.滑動(dòng)窗口分析,通過(guò)比較相鄰窗口的數(shù)據(jù)差異來(lái)檢測(cè)變化,但窗口大小選擇困難B.基于統(tǒng)計(jì)的假設(shè)檢驗(yàn),如t檢驗(yàn)或方差分析,但對(duì)數(shù)據(jù)分布有要求C.變點(diǎn)檢測(cè)算法,如CUSUM或Pettitt檢驗(yàn),專(zhuān)門(mén)用于檢測(cè)變化點(diǎn),但可能對(duì)噪聲敏感D.深度學(xué)習(xí)中的異常檢測(cè)模型,能夠自動(dòng)學(xué)習(xí)變化模式,但需要大量數(shù)據(jù)訓(xùn)練6、在一個(gè)多標(biāo)簽分類(lèi)問(wèn)題中,每個(gè)樣本可能同時(shí)屬于多個(gè)類(lèi)別。例如,一篇文章可能同時(shí)涉及科技、娛樂(lè)和體育等多個(gè)主題。以下哪種方法可以有效地處理多標(biāo)簽分類(lèi)任務(wù)?()A.將多標(biāo)簽問(wèn)題轉(zhuǎn)化為多個(gè)二分類(lèi)問(wèn)題,分別進(jìn)行預(yù)測(cè)B.使用一個(gè)單一的分類(lèi)器,輸出多個(gè)概率值表示屬于各個(gè)類(lèi)別的可能性C.對(duì)每個(gè)標(biāo)簽分別訓(xùn)練一個(gè)獨(dú)立的分類(lèi)器D.以上方法都不可行,多標(biāo)簽分類(lèi)問(wèn)題無(wú)法通過(guò)機(jī)器學(xué)習(xí)解決7、想象一個(gè)圖像識(shí)別的任務(wù),需要對(duì)大量的圖片進(jìn)行分類(lèi),例如區(qū)分貓和狗的圖片。為了達(dá)到較好的識(shí)別效果,同時(shí)考慮計(jì)算資源和訓(xùn)練時(shí)間的限制。以下哪種方法可能是最合適的?()A.使用傳統(tǒng)的機(jī)器學(xué)習(xí)算法,如基于特征工程的支持向量機(jī),需要手動(dòng)設(shè)計(jì)特征,但計(jì)算量相對(duì)較小B.采用淺層的神經(jīng)網(wǎng)絡(luò),如只有一到兩個(gè)隱藏層的神經(jīng)網(wǎng)絡(luò),訓(xùn)練速度較快,但可能無(wú)法捕捉復(fù)雜的圖像特征C.運(yùn)用深度卷積神經(jīng)網(wǎng)絡(luò),如ResNet架構(gòu),能夠自動(dòng)學(xué)習(xí)特征,識(shí)別效果好,但計(jì)算資源需求大,訓(xùn)練時(shí)間長(zhǎng)D.利用遷移學(xué)習(xí),將在大規(guī)模圖像數(shù)據(jù)集上預(yù)訓(xùn)練好的模型,如Inception模型,微調(diào)應(yīng)用到當(dāng)前任務(wù),節(jié)省訓(xùn)練時(shí)間和計(jì)算資源8、在監(jiān)督學(xué)習(xí)中,常見(jiàn)的算法有線(xiàn)性回歸、邏輯回歸、支持向量機(jī)等。以下關(guān)于監(jiān)督學(xué)習(xí)算法的說(shuō)法中,錯(cuò)誤的是:線(xiàn)性回歸用于預(yù)測(cè)連續(xù)值,邏輯回歸用于分類(lèi)任務(wù)。支持向量機(jī)通過(guò)尋找一個(gè)最優(yōu)的超平面來(lái)分類(lèi)數(shù)據(jù)。那么,下列關(guān)于監(jiān)督學(xué)習(xí)算法的說(shuō)法錯(cuò)誤的是()A.線(xiàn)性回歸的模型簡(jiǎn)單,容易理解,但對(duì)于復(fù)雜的數(shù)據(jù)集可能效果不佳B.邏輯回歸可以處理二分類(lèi)和多分類(lèi)問(wèn)題,并且可以輸出概率值C.支持向量機(jī)在小樣本數(shù)據(jù)集上表現(xiàn)出色,但對(duì)于大規(guī)模數(shù)據(jù)集計(jì)算成本較高D.監(jiān)督學(xué)習(xí)算法的性能只取決于模型的復(fù)雜度,與數(shù)據(jù)的特征選擇無(wú)關(guān)9、無(wú)監(jiān)督學(xué)習(xí)算法主要包括聚類(lèi)和降維等方法。以下關(guān)于無(wú)監(jiān)督學(xué)習(xí)算法的說(shuō)法中,錯(cuò)誤的是:聚類(lèi)算法將數(shù)據(jù)分成不同的組,而降維算法則將高維數(shù)據(jù)映射到低維空間。那么,下列關(guān)于無(wú)監(jiān)督學(xué)習(xí)算法的說(shuō)法錯(cuò)誤的是()A.K均值聚類(lèi)算法需要預(yù)先指定聚類(lèi)的個(gè)數(shù)K,并且對(duì)初始值比較敏感B.層次聚類(lèi)算法可以生成樹(shù)形結(jié)構(gòu)的聚類(lèi)結(jié)果,便于直觀(guān)理解C.主成分分析是一種常用的降維算法,可以保留數(shù)據(jù)的主要特征D.無(wú)監(jiān)督學(xué)習(xí)算法不需要任何先驗(yàn)知識(shí),完全由數(shù)據(jù)本身驅(qū)動(dòng)10、在進(jìn)行時(shí)間序列預(yù)測(cè)時(shí),有多種方法可供選擇。假設(shè)我們要預(yù)測(cè)股票價(jià)格的走勢(shì)。以下關(guān)于時(shí)間序列預(yù)測(cè)方法的描述,哪一項(xiàng)是不正確的?()A.自回歸移動(dòng)平均(ARMA)模型假設(shè)時(shí)間序列是線(xiàn)性的,通過(guò)對(duì)歷史數(shù)據(jù)的加權(quán)平均和殘差來(lái)進(jìn)行預(yù)測(cè)B.差分整合移動(dòng)平均自回歸(ARIMA)模型可以處理非平穩(wěn)的時(shí)間序列,通過(guò)差分操作將其轉(zhuǎn)化為平穩(wěn)序列C.長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)能夠捕捉時(shí)間序列中的長(zhǎng)期依賴(lài)關(guān)系,適用于復(fù)雜的時(shí)間序列預(yù)測(cè)任務(wù)D.所有的時(shí)間序列預(yù)測(cè)方法都能準(zhǔn)確地預(yù)測(cè)未來(lái)的股票價(jià)格,不受市場(chǎng)不確定性和突發(fā)事件的影響11、在機(jī)器學(xué)習(xí)中,強(qiáng)化學(xué)習(xí)是一種通過(guò)與環(huán)境交互來(lái)學(xué)習(xí)最優(yōu)策略的方法。假設(shè)一個(gè)機(jī)器人要通過(guò)強(qiáng)化學(xué)習(xí)來(lái)學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)化學(xué)習(xí)中的智能體根據(jù)環(huán)境的反饋(獎(jiǎng)勵(lì)或懲罰)來(lái)調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法,通過(guò)估計(jì)狀態(tài)-動(dòng)作值來(lái)選擇最優(yōu)動(dòng)作C.策略梯度算法直接優(yōu)化策略函數(shù),通過(guò)計(jì)算策略的梯度來(lái)更新策略參數(shù)D.強(qiáng)化學(xué)習(xí)不需要對(duì)環(huán)境進(jìn)行建模,只需要不斷嘗試不同的動(dòng)作就能找到最優(yōu)策略12、在一個(gè)信用評(píng)估的問(wèn)題中,需要根據(jù)個(gè)人的信用記錄、收入、債務(wù)等信息評(píng)估其信用風(fēng)險(xiǎn)。以下哪種模型評(píng)估指標(biāo)可能是最重要的?()A.準(zhǔn)確率(Accuracy),衡量正確分類(lèi)的比例,但在不平衡數(shù)據(jù)集中可能不準(zhǔn)確B.召回率(Recall),關(guān)注正例的識(shí)別能力,但可能導(dǎo)致誤判增加C.F1分?jǐn)?shù),綜合考慮準(zhǔn)確率和召回率,但對(duì)不同類(lèi)別的權(quán)重相同D.受試者工作特征曲線(xiàn)下面積(AUC-ROC),能夠評(píng)估模型在不同閾值下的性能,對(duì)不平衡數(shù)據(jù)較穩(wěn)健13、在一個(gè)無(wú)監(jiān)督學(xué)習(xí)問(wèn)題中,需要發(fā)現(xiàn)數(shù)據(jù)中的潛在結(jié)構(gòu)。如果數(shù)據(jù)具有層次結(jié)構(gòu),以下哪種方法可能比較適合?()A.自組織映射(SOM)B.生成對(duì)抗網(wǎng)絡(luò)(GAN)C.層次聚類(lèi)D.以上方法都可以14、在進(jìn)行圖像識(shí)別任務(wù)時(shí),需要對(duì)大量的圖像數(shù)據(jù)進(jìn)行特征提取。假設(shè)我們有一組包含各種動(dòng)物的圖像,要區(qū)分貓和狗。如果采用傳統(tǒng)的手工設(shè)計(jì)特征方法,可能會(huì)面臨諸多挑戰(zhàn),例如特征的選擇和設(shè)計(jì)需要豐富的專(zhuān)業(yè)知識(shí)和經(jīng)驗(yàn)。而使用深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN),能夠自動(dòng)從數(shù)據(jù)中學(xué)習(xí)特征。那么,以下關(guān)于CNN在圖像特征提取方面的描述,哪一項(xiàng)是正確的?()A.CNN只能提取圖像的低級(jí)特征,如邊緣和顏色B.CNN能夠同時(shí)提取圖像的低級(jí)和高級(jí)語(yǔ)義特征,具有強(qiáng)大的表達(dá)能力C.CNN提取的特征與圖像的內(nèi)容無(wú)關(guān),主要取決于網(wǎng)絡(luò)結(jié)構(gòu)D.CNN提取的特征是固定的,無(wú)法根據(jù)不同的圖像數(shù)據(jù)集進(jìn)行調(diào)整15、考慮一個(gè)圖像分類(lèi)任務(wù),使用深度學(xué)習(xí)模型進(jìn)行訓(xùn)練。在訓(xùn)練過(guò)程中,如果發(fā)現(xiàn)模型在訓(xùn)練集上的準(zhǔn)確率很高,但在驗(yàn)證集上的準(zhǔn)確率較低,可能存在以下哪種問(wèn)題?()A.模型欠擬合,需要增加模型的復(fù)雜度B.數(shù)據(jù)預(yù)處理不當(dāng),需要重新處理數(shù)據(jù)C.模型過(guò)擬合,需要采取正則化措施D.訓(xùn)練數(shù)據(jù)量不足,需要增加更多的數(shù)據(jù)二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋如何在機(jī)器學(xué)習(xí)中處理異常值。2、(本題5分)簡(jiǎn)述在機(jī)器學(xué)習(xí)中,如何處理類(lèi)別不平衡的數(shù)據(jù)集。3、(本題5分)說(shuō)明機(jī)器學(xué)習(xí)在動(dòng)物學(xué)中的行為分析。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)分析長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)和門(mén)控循環(huán)單元(GRU)的改進(jìn)之處及在序列數(shù)據(jù)處理中的優(yōu)勢(shì)。2、(本題5分)分析機(jī)器學(xué)習(xí)中的半監(jiān)督學(xué)習(xí)在圖像標(biāo)注中的應(yīng)用。半監(jiān)督學(xué)習(xí)可以用于圖像標(biāo)注,減少標(biāo)注成本,介紹其應(yīng)用方法。3、(本題5分)詳細(xì)闡述自動(dòng)編碼器(Autoencoder)在數(shù)據(jù)壓縮和特征學(xué)習(xí)中的作用,分析其與主成分分析(PCA)的區(qū)別和聯(lián)系。4、(本題5分)探討深度學(xué)習(xí)中的圖神經(jīng)網(wǎng)絡(luò)的原理及應(yīng)用。分析其在社交網(wǎng)絡(luò)分析、化學(xué)結(jié)構(gòu)預(yù)測(cè)等方面的潛力。5、(本題5分)分析機(jī)器學(xué)習(xí)中

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論