華中農(nóng)業(yè)大學(xué)《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
華中農(nóng)業(yè)大學(xué)《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
華中農(nóng)業(yè)大學(xué)《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
華中農(nóng)業(yè)大學(xué)《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
華中農(nóng)業(yè)大學(xué)《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)華中農(nóng)業(yè)大學(xué)《神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在一個(gè)語(yǔ)音合成任務(wù)中,需要將輸入的文本轉(zhuǎn)換為自然流暢的語(yǔ)音。以下哪種技術(shù)或模型常用于語(yǔ)音合成?()A.隱馬爾可夫模型(HMM)B.深度神經(jīng)網(wǎng)絡(luò)(DNN)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),如LSTM或GRUD.以上都是2、想象一個(gè)圖像識(shí)別的任務(wù),需要對(duì)大量的圖片進(jìn)行分類,例如區(qū)分貓和狗的圖片。為了達(dá)到較好的識(shí)別效果,同時(shí)考慮計(jì)算資源和訓(xùn)練時(shí)間的限制。以下哪種方法可能是最合適的?()A.使用傳統(tǒng)的機(jī)器學(xué)習(xí)算法,如基于特征工程的支持向量機(jī),需要手動(dòng)設(shè)計(jì)特征,但計(jì)算量相對(duì)較小B.采用淺層的神經(jīng)網(wǎng)絡(luò),如只有一到兩個(gè)隱藏層的神經(jīng)網(wǎng)絡(luò),訓(xùn)練速度較快,但可能無(wú)法捕捉復(fù)雜的圖像特征C.運(yùn)用深度卷積神經(jīng)網(wǎng)絡(luò),如ResNet架構(gòu),能夠自動(dòng)學(xué)習(xí)特征,識(shí)別效果好,但計(jì)算資源需求大,訓(xùn)練時(shí)間長(zhǎng)D.利用遷移學(xué)習(xí),將在大規(guī)模圖像數(shù)據(jù)集上預(yù)訓(xùn)練好的模型,如Inception模型,微調(diào)應(yīng)用到當(dāng)前任務(wù),節(jié)省訓(xùn)練時(shí)間和計(jì)算資源3、在進(jìn)行模型融合時(shí),以下關(guān)于模型融合的方法和作用,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)平均多個(gè)模型的預(yù)測(cè)結(jié)果來(lái)進(jìn)行融合,降低模型的方差B.堆疊(Stacking)是一種將多個(gè)模型的預(yù)測(cè)結(jié)果作為輸入,訓(xùn)練一個(gè)新的模型進(jìn)行融合的方法C.模型融合可以結(jié)合不同模型的優(yōu)點(diǎn),提高整體的預(yù)測(cè)性能D.模型融合總是能顯著提高模型的性能,無(wú)論各個(gè)模型的性能如何4、在一個(gè)回歸問(wèn)題中,如果數(shù)據(jù)存在多重共線性,以下哪種方法可以用于解決這個(gè)問(wèn)題?()A.特征選擇B.正則化C.主成分回歸D.以上方法都可以5、假設(shè)要使用機(jī)器學(xué)習(xí)算法來(lái)預(yù)測(cè)房?jī)r(jià)。數(shù)據(jù)集包含了房屋的面積、位置、房間數(shù)量等特征。如果特征之間存在非線性關(guān)系,以下哪種模型可能更適合?()A.線性回歸模型B.決策樹(shù)回歸模型C.支持向量回歸模型D.以上模型都可能適用6、在機(jī)器學(xué)習(xí)中,降維是一種常見(jiàn)的操作,用于減少特征的數(shù)量。以下哪種降維方法是基于線性變換的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-SNED.以上都是7、在進(jìn)行深度學(xué)習(xí)模型的訓(xùn)練時(shí),優(yōu)化算法對(duì)模型的收斂速度和性能有重要影響。假設(shè)我們正在訓(xùn)練一個(gè)多層感知機(jī)(MLP)模型。以下關(guān)于優(yōu)化算法的描述,哪一項(xiàng)是不正確的?()A.隨機(jī)梯度下降(SGD)算法是一種常用的優(yōu)化算法,通過(guò)不斷調(diào)整模型參數(shù)來(lái)最小化損失函數(shù)B.動(dòng)量(Momentum)方法可以加速SGD的收斂,減少震蕩C.Adagrad算法根據(jù)每個(gè)參數(shù)的歷史梯度自適應(yīng)地調(diào)整學(xué)習(xí)率,對(duì)稀疏特征效果較好D.所有的優(yōu)化算法在任何情況下都能使模型快速收斂到最優(yōu)解,不需要根據(jù)模型和數(shù)據(jù)特點(diǎn)進(jìn)行選擇8、在一個(gè)醫(yī)療診斷項(xiàng)目中,我們希望利用機(jī)器學(xué)習(xí)算法來(lái)預(yù)測(cè)患者是否患有某種疾病。收集到的數(shù)據(jù)集包含患者的各種生理指標(biāo)、病史等信息。在選擇合適的機(jī)器學(xué)習(xí)算法時(shí),需要考慮多個(gè)因素,如數(shù)據(jù)的規(guī)模、特征的數(shù)量、數(shù)據(jù)的平衡性等。如果數(shù)據(jù)量較大,特征維度較高,且存在一定的噪聲,以下哪種算法可能是最優(yōu)選擇?()A.邏輯回歸算法,簡(jiǎn)單且易于解釋B.決策樹(shù)算法,能夠處理非線性關(guān)系C.支持向量機(jī)算法,在小樣本數(shù)據(jù)上表現(xiàn)出色D.隨機(jī)森林算法,對(duì)噪聲和異常值具有較好的容忍性9、在一個(gè)文本生成任務(wù)中,例如生成詩(shī)歌或故事,以下哪種方法常用于生成自然語(yǔ)言文本?()A.基于規(guī)則的方法B.基于模板的方法C.基于神經(jīng)網(wǎng)絡(luò)的方法,如TransformerD.以上都不是10、在進(jìn)行遷移學(xué)習(xí)時(shí),以下關(guān)于遷移學(xué)習(xí)的應(yīng)用場(chǎng)景和優(yōu)勢(shì),哪一項(xiàng)是不準(zhǔn)確的?()A.當(dāng)目標(biāo)任務(wù)的數(shù)據(jù)量較少時(shí),可以利用在大規(guī)模數(shù)據(jù)集上預(yù)訓(xùn)練的模型進(jìn)行遷移學(xué)習(xí)B.可以將在一個(gè)領(lǐng)域?qū)W習(xí)到的模型參數(shù)直接應(yīng)用到另一個(gè)不同但相關(guān)的領(lǐng)域中C.遷移學(xué)習(xí)能夠加快模型的訓(xùn)練速度,提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只適用于深度學(xué)習(xí)模型,對(duì)于傳統(tǒng)機(jī)器學(xué)習(xí)模型不適用11、在特征工程中,獨(dú)熱編碼(One-HotEncoding)用于()A.處理類別特征B.處理數(shù)值特征C.降維D.以上都不是12、假設(shè)我們有一個(gè)時(shí)間序列數(shù)據(jù),想要預(yù)測(cè)未來(lái)的值。以下哪種機(jī)器學(xué)習(xí)算法可能不太適合()A.線性回歸B.長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)C.隨機(jī)森林D.自回歸移動(dòng)平均模型(ARMA)13、在一個(gè)監(jiān)督學(xué)習(xí)問(wèn)題中,我們需要評(píng)估模型在新數(shù)據(jù)上的泛化能力。如果數(shù)據(jù)集較小且存在類別不平衡的情況,以下哪種評(píng)估指標(biāo)需要特別謹(jǐn)慎地使用?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)14、強(qiáng)化學(xué)習(xí)中的智能體通過(guò)與環(huán)境的交互來(lái)學(xué)習(xí)最優(yōu)策略。以下關(guān)于強(qiáng)化學(xué)習(xí)的說(shuō)法中,錯(cuò)誤的是:強(qiáng)化學(xué)習(xí)的目標(biāo)是最大化累計(jì)獎(jiǎng)勵(lì)。智能體根據(jù)當(dāng)前狀態(tài)選擇動(dòng)作,環(huán)境根據(jù)動(dòng)作反饋新的狀態(tài)和獎(jiǎng)勵(lì)。那么,下列關(guān)于強(qiáng)化學(xué)習(xí)的說(shuō)法錯(cuò)誤的是()A.Q學(xué)習(xí)是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法B.策略梯度算法是一種基于策略的強(qiáng)化學(xué)習(xí)算法C.強(qiáng)化學(xué)習(xí)算法只適用于離散動(dòng)作空間,對(duì)于連續(xù)動(dòng)作空間不適用D.強(qiáng)化學(xué)習(xí)可以應(yīng)用于機(jī)器人控制、游戲等領(lǐng)域15、欠擬合也是機(jī)器學(xué)習(xí)中需要關(guān)注的問(wèn)題。以下關(guān)于欠擬合的說(shuō)法中,錯(cuò)誤的是:欠擬合是指模型在訓(xùn)練數(shù)據(jù)和測(cè)試數(shù)據(jù)上的表現(xiàn)都不佳。欠擬合的原因可能是模型過(guò)于簡(jiǎn)單或者數(shù)據(jù)特征不足。那么,下列關(guān)于欠擬合的說(shuō)法錯(cuò)誤的是()A.增加模型的復(fù)雜度可以緩解欠擬合問(wèn)題B.收集更多的特征數(shù)據(jù)可以緩解欠擬合問(wèn)題C.欠擬合問(wèn)題比過(guò)擬合問(wèn)題更容易解決D.欠擬合只在小樣本數(shù)據(jù)集上出現(xiàn),大規(guī)模數(shù)據(jù)集不會(huì)出現(xiàn)欠擬合問(wèn)題二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋機(jī)器學(xué)習(xí)在金融風(fēng)險(xiǎn)預(yù)測(cè)中的方法。2、(本題5分)機(jī)器學(xué)習(xí)中如何評(píng)估分類模型的性能?3、(本題5分)簡(jiǎn)述在智能交通信號(hào)控制中,機(jī)器學(xué)習(xí)的方法。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)闡述機(jī)器學(xué)習(xí)中的深度學(xué)習(xí)在視頻壓縮中的應(yīng)用。分析視頻編碼、碼率控制、畫質(zhì)優(yōu)化等方面的深度學(xué)習(xí)方法和應(yīng)用效果。2、(本題5分)分析機(jī)器學(xué)習(xí)中的序列到序列學(xué)習(xí)算法及其應(yīng)用。序列到序列學(xué)習(xí)可以用于機(jī)器翻譯、語(yǔ)音合成等任務(wù)。介紹序列到序列學(xué)習(xí)算法的原理和應(yīng)用領(lǐng)域。3、(本題5分)詳細(xì)探討無(wú)監(jiān)督學(xué)習(xí)中的自組織映射(SOM)算法的原理和應(yīng)用。分析SOM與其他聚類算法的異同和優(yōu)勢(shì)。4、(本題5分)論述機(jī)器學(xué)習(xí)在智能物流配送中的應(yīng)用。分析機(jī)器學(xué)習(xí)算法如何用于優(yōu)化物流配送路徑,提高配送效率。討論面臨的挑戰(zhàn)及未來(lái)發(fā)展趨勢(shì)。5、(本題5分)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論