![浙江省十校聯(lián)盟選考學考2025屆高考適應性考試數(shù)學試卷含解析_第1頁](http://file4.renrendoc.com/view14/M09/14/2D/wKhkGWddtaiAGnAaAAJN4g6Q0Iw609.jpg)
![浙江省十校聯(lián)盟選考學考2025屆高考適應性考試數(shù)學試卷含解析_第2頁](http://file4.renrendoc.com/view14/M09/14/2D/wKhkGWddtaiAGnAaAAJN4g6Q0Iw6092.jpg)
![浙江省十校聯(lián)盟選考學考2025屆高考適應性考試數(shù)學試卷含解析_第3頁](http://file4.renrendoc.com/view14/M09/14/2D/wKhkGWddtaiAGnAaAAJN4g6Q0Iw6093.jpg)
![浙江省十校聯(lián)盟選考學考2025屆高考適應性考試數(shù)學試卷含解析_第4頁](http://file4.renrendoc.com/view14/M09/14/2D/wKhkGWddtaiAGnAaAAJN4g6Q0Iw6094.jpg)
![浙江省十校聯(lián)盟選考學考2025屆高考適應性考試數(shù)學試卷含解析_第5頁](http://file4.renrendoc.com/view14/M09/14/2D/wKhkGWddtaiAGnAaAAJN4g6Q0Iw6095.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省十校聯(lián)盟選考學考2025屆高考適應性考試數(shù)學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.2.設是等差數(shù)列,且公差不為零,其前項和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件3.如圖,這是某校高三年級甲、乙兩班在上學期的5次數(shù)學測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學成績平均分的平均水平高于乙班B.甲班的數(shù)學成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學測試的總平均分是1034.已知,,則()A. B. C.3 D.45.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數(shù)列,則的離心率為()A. B. C. D.6.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.7.已知,則的大小關系為A. B. C. D.8.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.39.設函數(shù)(,)是上的奇函數(shù),若的圖象關于直線對稱,且在區(qū)間上是單調函數(shù),則()A. B. C. D.10.已知,且,則的值為()A. B. C. D.11.已知全集,集合,則=()A. B.C. D.12.已知向量與向量平行,,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線:(,),直線:與雙曲線的兩條漸近線分別交于,兩點.若(點為坐標原點)的面積為32,且雙曲線的焦距為,則雙曲線的離心率為________.14.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.15.函數(shù)過定點________.16.已知拋物線的焦點和橢圓的右焦點重合,直線過拋物線的焦點與拋物線交于、兩點和橢圓交于、兩點,為拋物線準線上一動點,滿足,,當面積最大時,直線的方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,若.(1)求角的大??;(2)若,為外一點,,求四邊形面積的最大值.18.(12分)已知函數(shù),直線是曲線在處的切線.(1)求證:無論實數(shù)取何值,直線恒過定點,并求出該定點的坐標;(2)若直線經(jīng)過點,試判斷函數(shù)的零點個數(shù)并證明.19.(12分)已知等差數(shù)列和等比數(shù)列的各項均為整數(shù),它們的前項和分別為,且,.(1)求數(shù)列,的通項公式;(2)求;(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項?若存在,求出所有滿足條件的的值;若不存在,說明理由.20.(12分)設函數(shù).(1)當時,解不等式;(2)若的解集為,,求證:.21.(12分)設為等差數(shù)列的前項和,且,.(1)求數(shù)列的通項公式;(2)若滿足不等式的正整數(shù)恰有個,求正實數(shù)的取值范圍.22.(10分)設函數(shù)(其中),且函數(shù)在處的切線與直線平行.(1)求的值;(2)若函數(shù),求證:恒成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用余弦定理角化邊整理可得結果.【詳解】由余弦定理得:,整理可得:,.故選:.【點睛】本題考查余弦定理邊角互化的應用,屬于基礎題.2、A【解析】
根據(jù)等差數(shù)列的前項和公式以及充分條件和必要條件的定義進行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數(shù)列為單調遞減數(shù)列,則必存在,使得當時,,則,不合乎題意;若,由且數(shù)列為單調遞增數(shù)列,則對任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設,當時,,此時,,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結合等差數(shù)列的前項和公式是解決本題的關鍵,屬于中等題.3、D【解析】
計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學生的計算能力和應用能力.4、A【解析】
根據(jù)復數(shù)相等的特征,求出和,再利用復數(shù)的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數(shù)的特征和復數(shù)的模,屬于基礎題.5、C【解析】
根據(jù)等差數(shù)列的性質設出,,,利用勾股定理列方程,結合橢圓的定義,求得.再利用勾股定理建立的關系式,化簡后求得離心率.【詳解】由已知,,成等差數(shù)列,設,,.由于,據(jù)勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質,屬于中檔題.6、A【解析】
由函數(shù)性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質及特殊值利用排除法是解決本題的關鍵,難度一般.7、D【解析】
分析:由題意結合對數(shù)的性質,對數(shù)函數(shù)的單調性和指數(shù)的性質整理計算即可確定a,b,c的大小關系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數(shù)冪的大小的比較,我們通常都是運用指數(shù)函數(shù)的單調性,但很多時候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調性進行比較.這就必須掌握一些特殊方法.在進行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調性進行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準確.8、A【解析】
分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質把動線段的長度轉化為到準線或焦點的距離來求解.9、D【解析】
根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調性即可確定的值,進而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關于直線對稱可得,,即,,由函數(shù)的單調區(qū)間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數(shù)的圖象與性質的綜合應用,由對稱軸、奇偶性及單調性確定參數(shù),屬于中檔題.10、A【解析】
由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.【點睛】本題考查三角函數(shù)誘導公式、二倍角公式以及兩角差的正切公式的應用,考查學生的基本計算能力,是一道基礎題.11、D【解析】
先計算集合,再計算,最后計算.【詳解】解:,,.故選:.【點睛】本題主要考查了集合的交,補混合運算,注意分清集合間的關系,屬于基礎題.12、B【解析】
設,根據(jù)題意得出關于、的方程組,解出這兩個未知數(shù)的值,即可得出向量的坐標.【詳解】設,且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數(shù)量積的坐標運算,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】
用表示出的面積,求得等量關系,聯(lián)立焦距的大小,以及,即可容易求得,則離心率得解.【詳解】聯(lián)立解得.所以的面積,所以.而由雙曲線的焦距為知,,所以.聯(lián)立解得或故雙曲線的離心率為或.故答案為:或.【點睛】本題考查雙曲線的方程與性質,考查運算求解能力以及函數(shù)與方程思想,屬中檔題.14、【解析】
由已知可得,結合雙曲線的定義可知,結合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質.本題的關鍵是根據(jù)幾何關系,分析出.關于圓錐曲線的問題,一般如果能結合幾何性質,可大大減少計算量.15、【解析】
令,,與參數(shù)無關,即可得到定點.【詳解】由指數(shù)函數(shù)的性質,可得,函數(shù)值與參數(shù)無關,所有過定點.故答案為:【點睛】此題考查函數(shù)的定點問題,關鍵在于找出自變量的取值使函數(shù)值與參數(shù)無關,熟記常見函數(shù)的定點可以節(jié)省解題時間.16、【解析】
根據(jù)均值不等式得到,,根據(jù)等號成立條件得到直線的傾斜角為,計算得到直線方程.【詳解】由橢圓,可知,,,,,,,(當且僅當,等號成立),,,,,直線的傾斜角為,直線的方程為.故答案為:.【點睛】本題考查了拋物線,橢圓,直線的綜合應用,意在考查學生的計算能力和綜合應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)正弦定理化簡等式可得,即;(2)根據(jù)題意,利用余弦定理可得,再表示出,表示出四邊形,進而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當時,四邊形的面積取最大值,最大值為.【點睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應用,屬于基礎題.18、(1)見解析,(2)函數(shù)存在唯一零點.【解析】
(1)首先求出導函數(shù),利用導數(shù)的幾何意義求出處的切線斜率,利用點斜式即可求出切線方程,根據(jù)方程即可求出定點.(2)由(1)求出函數(shù),令方程可轉化為記,利用導數(shù)判斷函數(shù)在上單調遞增,根據(jù),由零點存在性定理即可求出零點個數(shù).【詳解】所以直線方程為即,恒過點將代入直線方程,得考慮方程即,等價于記,則于是函數(shù)在上單調遞增,又所以函數(shù)在區(qū)間上存在唯一零點,即函數(shù)存在唯一零點.【點睛】本題考查了導數(shù)的幾何意義、直線過定點、利用導數(shù)研究函數(shù)的單調性、零點存在性定理,屬于難題.19、(1);(2);(3)存在,1.【解析】
(1)利用基本量法直接計算即可;(2)利用錯位相減法計算;(3),令可得,,討論即可.【詳解】(1)設數(shù)列的公差為,數(shù)列的公比為,因為,所以,即,解得,或(舍去).所以.(2),,所以,所以.(3)由(1)可得,,所以.因為是數(shù)列或中的一項,所以,所以,因為,所以,又,則或.當時,有,即,令.則.當時,;當時,,即.由,知無整數(shù)解.當時,有,即存在使得是數(shù)列中的第2項,故存在正整數(shù),使得是數(shù)列中的項.【點睛】本題考查數(shù)列的綜合應用,涉及到等差、等比數(shù)列的通項,錯位相減法求數(shù)列的前n項和,數(shù)列中的存在性問題,是一道較為綜合的題.20、(1);(2)見解析.【解析】
(1)當時,將所求不等式變形為,然后分、、三段解不等式,綜合可得出原不等式的解集;(2)先由不等式的解集求得實數(shù),可得出,將代數(shù)式變形為,將與相乘,展開后利用基本不等式可求得的最小值,進而可證得結論.【詳解】(1)當時,不等式為,且.當時,由得,解得,此時;當時,由得,該不等式不成立,此時;當時,由得,解得,此時.綜上所述,不等式的解集為;(2)由,得,即或,不等式的解集為,故,解得,,,,,當且僅當,時取等號,.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式,考查推理能力與計算能力,屬于中等題.21、(1);(2).【解析】
(1)設等差數(shù)列的公差為,根據(jù)題意得出關于和的方程組,解出這兩個量的值,然后利用等差數(shù)列的通項公式可得出數(shù)列的通項公式;(2)求出,可得出,可知當為奇數(shù)時不等式不成立,只考慮為偶數(shù)的情況,利用數(shù)列單調性的定義判斷數(shù)列中偶數(shù)項構成的數(shù)列的單調性,由此能求出正實數(shù)的取值范圍.【詳解】(1)設等差數(shù)列的公差為,則,整理得,解得,,因此,;(2),滿足不等式的正整數(shù)恰有個,得,由于,若為奇數(shù),則不等式不可能成立.只考慮為偶數(shù)的情況,令,則,..
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年產(chǎn)業(yè)園區(qū)租賃承包合同樣本
- 食堂運營權簡約出租合同示例2025
- 2025年光電網(wǎng)絡施工勞務分包合作協(xié)議
- 2025年臨時用地基礎設施協(xié)議
- 2025年協(xié)作資金使用協(xié)議示范
- 2025年互惠互利合作協(xié)議書
- 2025年人才招聘咨詢服務協(xié)議模板
- 2025年倉儲物流服務承包合同范本
- 2025年企業(yè)和個人間生產(chǎn)車間承包合同
- 2025年撫順貨運從業(yè)資格證考試模擬考試題庫
- 保育師(四級)理論知識考核要素細目表
- 洗滌塔操作說明
- 故障處理記錄和總結分析表
- 墨點美術:芥子園畫譜
- 火龍罐技術課件
- 奧迪TT汽車說明書
- 撤銷因私出國(境)登記備案國家工作人員通知書
- (21)-9.1《藝術學概論》第九章第一節(jié) 藝術批評的含義與性質、原
- 樓梯臺階抹灰施工技術交底
- 給教師的一百條建議-讀書分享會
- 小學數(shù)學教學評一致性研討活動
評論
0/150
提交評論