版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省吉安市遂川中學(xué)2025屆高三第二次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用,化簡(jiǎn),得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.2.已知點(diǎn)是雙曲線上一點(diǎn),若點(diǎn)到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為()A. B. C. D.23.復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或95.已知雙曲線與雙曲線沒有公共點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.6.若點(diǎn)(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或7.已知集合,,若,則()A.4 B.-4 C.8 D.-88.如圖所示,已知雙曲線的右焦點(diǎn)為,雙曲線的右支上一點(diǎn),它關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,滿足,且,則雙曲線的離心率是().A. B. C. D.9.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽(yáng)馬體積的最大值為時(shí),塹堵的外接球的體積為()A. B. C. D.10.設(shè)全集,集合,,則集合()A. B. C. D.11.若復(fù)數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.412.將函數(shù)的圖像向左平移個(gè)單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓柱的上下底面的中心分別為,過直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為____14.?dāng)?shù)列的前項(xiàng)和為,則數(shù)列的前項(xiàng)和_____.15.在中,角,,的對(duì)邊分別為,,,若,且,則面積的最大值為________.16.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬.如圖,若四棱錐為陽(yáng)馬,側(cè)棱底面,且,,設(shè)該陽(yáng)馬的外接球半徑為,內(nèi)切球半徑為,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在極坐標(biāo)系中,已知曲線C的方程為(),直線l的方程為.設(shè)直線l與曲線C相交于A,B兩點(diǎn),且,求r的值.18.(12分)三棱柱中,平面平面,,點(diǎn)為棱的中點(diǎn),點(diǎn)為線段上的動(dòng)點(diǎn).(1)求證:;(2)若直線與平面所成角為,求二面角的正切值.19.(12分)已知數(shù)列{an}滿足條件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=,Sn為數(shù)列{bn}的前n項(xiàng)和,求證:Sn.20.(12分)在中,角A、B、C的對(duì)邊分別為a、b、c,且.(1)求角A的大??;(2)若,的平分線與交于點(diǎn)D,與的外接圓交于點(diǎn)E(異于點(diǎn)A),,求的值.21.(12分)新型冠狀病毒肺炎疫情發(fā)生以來,電子購(gòu)物平臺(tái)成為人們的熱門選擇.為提高市場(chǎng)銷售業(yè)績(jī),某公司設(shè)計(jì)了一套產(chǎn)品促銷方案,并在某地區(qū)部分營(yíng)銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn).運(yùn)作一年后,對(duì)“采用促銷”和“沒有采用促銷”的營(yíng)銷網(wǎng)點(diǎn)各選取了50個(gè),對(duì)比上一年度的銷售情況,分別統(tǒng)計(jì)了它們的年銷售總額,并按年銷售總額增長(zhǎng)的百分點(diǎn)分成5組:,分別統(tǒng)計(jì)后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長(zhǎng)10個(gè)百分點(diǎn)及以上的營(yíng)銷網(wǎng)點(diǎn)為“精英店”.(1)請(qǐng)你根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“精英店與采用促銷活動(dòng)有關(guān)”;采用促銷沒有采用促銷合計(jì)精英店非精英店合計(jì)5050100(2)某“精英店”為了創(chuàng)造更大的利潤(rùn),通過分析上一年度的售價(jià)(單位:元)和日銷量(單位:件)的一組數(shù)據(jù)后決定選擇作為回歸模型進(jìn)行擬合.具體數(shù)據(jù)如下表,表中的:①根據(jù)上表數(shù)據(jù)計(jì)算的值;②已知該公司成本為10元/件,促銷費(fèi)用平均5元/件,根據(jù)所求出的回歸模型,分析售價(jià)定為多少時(shí)日利潤(rùn)可以達(dá)到最大.附①:附②:對(duì)應(yīng)一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為.22.(10分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當(dāng)x>0時(shí),若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實(shí)數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】分析:設(shè)三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設(shè)三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點(diǎn)睛:應(yīng)用幾何概型求概率的方法建立相應(yīng)的幾何概型,將試驗(yàn)構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個(gè)連續(xù)變量可建立與長(zhǎng)度有關(guān)的幾何概型,只需把這個(gè)變量放在數(shù)軸上即可;(2)若一個(gè)隨機(jī)事件需要用兩個(gè)變量來描述,則可用這兩個(gè)變量的有序?qū)崝?shù)對(duì)來表示它的基本事件,然后利用平面直角坐標(biāo)系就能順利地建立與面積有關(guān)的幾何概型;(3)若一個(gè)隨機(jī)事件需要用三個(gè)連續(xù)變量來描述,則可用這三個(gè)變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標(biāo)系即可建立與體積有關(guān)的幾何概型.2、A【解析】
設(shè)點(diǎn)的坐標(biāo)為,代入橢圓方程可得,然后分別求出點(diǎn)到兩條漸近線的距離,由距離之積為,并結(jié)合,可得到的齊次方程,進(jìn)而可求出離心率的值.【詳解】設(shè)點(diǎn)的坐標(biāo)為,有,得.雙曲線的兩條漸近線方程為和,則點(diǎn)到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率,構(gòu)造的齊次方程是解決本題的關(guān)鍵,屬于中檔題.3、C【解析】
由復(fù)數(shù)除法求出,寫出共軛復(fù)數(shù),寫出共軛復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)即得【詳解】解析:,,對(duì)應(yīng)點(diǎn)為,在第三象限.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,共軛復(fù)數(shù)的概念,復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)除法法則是解題關(guān)鍵.4、C【解析】
由題意利用兩個(gè)向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點(diǎn)睛】本題主要考查兩個(gè)向量的數(shù)量積的定義和公式,屬于基礎(chǔ)題.5、C【解析】
先求得的漸近線方程,根據(jù)沒有公共點(diǎn),判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點(diǎn),所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點(diǎn)睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎(chǔ)題.6、D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點(diǎn)睛】(1)本題主要考查點(diǎn)到直線的距離公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和計(jì)算推理能力.(2)點(diǎn)到直線的距離.7、B【解析】
根據(jù)交集的定義,,可知,代入計(jì)算即可求出.【詳解】由,可知,又因?yàn)椋詴r(shí),,解得.故選:B.【點(diǎn)睛】本題考查交集的概念,屬于基礎(chǔ)題.8、C【解析】
易得,,又,平方計(jì)算即可得到答案.【詳解】設(shè)雙曲線C的左焦點(diǎn)為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點(diǎn)睛】本題考查求雙曲線離心率的問題,關(guān)鍵是建立的方程或不等關(guān)系,是一道中檔題.9、B【解析】
利用均值不等式可得,即可求得,進(jìn)而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又陽(yáng)馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點(diǎn)睛】本題以中國(guó)傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).10、C【解析】∵集合,,∴點(diǎn)睛:本題是道易錯(cuò)題,看清所問問題求并集而不是交集.11、B【解析】
根據(jù)復(fù)數(shù)的幾何意義可知復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,再根據(jù)復(fù)數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,表示復(fù)數(shù)對(duì)應(yīng)的點(diǎn)與點(diǎn)間的距離,又復(fù)數(shù)對(duì)應(yīng)的點(diǎn)所在圓的圓心到的距離為1,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)模的定義及其幾何意義應(yīng)用,屬于基礎(chǔ)題.12、B【解析】
根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)進(jìn)行求解即可.【詳解】將函數(shù)的圖象向左平移個(gè)單位,得到,此時(shí)與函數(shù)的圖象重合,則,即,,當(dāng)時(shí),取得最小值為,故選:.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關(guān)系求出解析式是解決本題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【詳解】解:因?yàn)檩S截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【點(diǎn)睛】考查圓柱的軸截面和其體積的求法,是基礎(chǔ)題.14、【解析】
解:兩式作差,得,經(jīng)過檢驗(yàn)得出數(shù)列的通項(xiàng)公式,進(jìn)而求得的通項(xiàng)公式,裂項(xiàng)相消求和即可.【詳解】解:兩式作差,得化簡(jiǎn)得,檢驗(yàn):當(dāng)n=1時(shí),,所以數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列;,,令故填:.【點(diǎn)睛】本題考查求數(shù)列的通項(xiàng)公式,裂項(xiàng)相消求數(shù)列的前n項(xiàng)和,解題過程中需要注意n的范圍以及對(duì)特殊項(xiàng)的討論,側(cè)重考查運(yùn)算能力.15、【解析】
利用正弦定理將角化邊得到,再由余弦定理得到,根據(jù)同角三角函數(shù)的基本關(guān)系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴,∴面積的最大值為.故答案為:【點(diǎn)睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應(yīng)用,以及基本不等式的應(yīng)用,屬于中檔題.16、【解析】
該陽(yáng)馬補(bǔ)形所得到的長(zhǎng)方體的對(duì)角線為外接球的直徑,由此能求出,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,從而內(nèi)切球半徑為,由此能求出.【詳解】四棱錐為陽(yáng)馬,側(cè)棱底面,且,,設(shè)該陽(yáng)馬的外接球半徑為,該陽(yáng)馬補(bǔ)形所得到的長(zhǎng)方體的對(duì)角線為外接球的直徑,,,側(cè)棱底面,且底面為正方形,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,內(nèi)切球半徑為,故.故答案為.【點(diǎn)睛】本題考查了幾何體外接球和內(nèi)切球的相關(guān)問題,補(bǔ)形法的運(yùn)用,以及數(shù)學(xué)文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關(guān)鍵是能夠確定球心位置,以及選擇恰當(dāng)?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補(bǔ)形法(構(gòu)造法),通過補(bǔ)形為長(zhǎng)方體(正方體),球心位置即為體對(duì)角線的中點(diǎn);(2)外心垂線法,先找出幾何體中不共線三點(diǎn)構(gòu)成的三角形的外心,再找出過外心且與不共線三點(diǎn)確定的平面垂直的垂線,則球心一定在垂線上.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
先將曲線C和直線l的極坐標(biāo)方程化為直角坐標(biāo)方程,可得圓心到直線的距離,再由勾股定理,計(jì)算即得.【詳解】以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,可得曲線C:()的直角坐標(biāo)方程為,表示以原點(diǎn)為圓心,半徑為r的圓.由直線l的方程,化簡(jiǎn)得,則直線l的直角坐標(biāo)方程方程為.記圓心到直線l的距離為d,則,又,即,所以.【點(diǎn)睛】本題考查曲線和直線的極坐標(biāo)方程化為直角坐標(biāo)方程,是基礎(chǔ)題.18、(1)見解析;(2)【解析】
(1)可證面,從而可得.(2)可證點(diǎn)為線段的三等分點(diǎn),再過作于,過作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標(biāo)系,利用兩個(gè)平面的法向量來計(jì)算二面角的平面角的余弦值,最后利用同角三角函數(shù)的基本關(guān)系式可求.【詳解】證明:(1)因?yàn)闉橹悬c(diǎn),所以.因?yàn)槠矫嫫矫妫矫嫫矫?,平面,所以平面,而平面,故,又因?yàn)?,所以,則,又,故面,又面,所以.(2)由(1)可得:面在面內(nèi)的射影為,則為直線與平面所成的角,即.因?yàn)?,所以,所以,所以,即點(diǎn)為線段的三等分點(diǎn).解法一:過作于,則平面,所以,過作,垂足為,則為二面角的平面角,因?yàn)?,,,則在中,有,所以二面角的平面角的正切值為.解法二:以點(diǎn)為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè)點(diǎn),由得:,即,,,點(diǎn),平面的一個(gè)法向量,又,,設(shè)平面的一個(gè)法向量為,則,令,則平面的一個(gè)法向量為.設(shè)二面角的平面角為,則,即,所以二面角的正切值為.【點(diǎn)睛】線線垂直的判定可由線面垂直得到,也可以由兩條線所成的角為得到,而線面垂直又可以由面面垂直得到,解題中注意三種垂直關(guān)系的轉(zhuǎn)化.空間中的角的計(jì)算,可以建立空間直角坐標(biāo)系把角的計(jì)算歸結(jié)為向量的夾角的計(jì)算,也可以構(gòu)建空間角,把角的計(jì)算歸結(jié)平面圖形中的角的計(jì)算.19、(Ⅰ)(Ⅱ)證明見解析【解析】
(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,對(duì)分奇偶討論,即可得;(Ⅱ)由(Ⅰ)得,用錯(cuò)位相減法求出,運(yùn)用分析法證明即可.【詳解】(Ⅰ),當(dāng)為奇數(shù)時(shí),,又由,得,當(dāng)為偶數(shù)時(shí),,又由a2=3,得,;(Ⅱ)由(1)得,則①②①-②可得:,,若證明Sn,則需要證明,又,即證明,即證,又顯然成立,故Sn得證.【點(diǎn)睛】本題主要考查了由遞推公式求通項(xiàng)公式,錯(cuò)位相減法求前項(xiàng)和,分析法證明不等式,考查了分類討論的思想,考查了學(xué)生的運(yùn)算求解與邏輯推理能力.20、(1);(2)【解析】
(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設(shè),在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因?yàn)?,所以,即,即,所?(2)∵,.所以,從而.所以,.不妨設(shè),O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點(diǎn)睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.21、(1)列聯(lián)表見解析,有把握;(2)①;②元時(shí)【解析】
(1)直接由題意列出列聯(lián)表,通過計(jì)算,可判斷精英店與采用促銷活動(dòng)是否有關(guān).(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年臨時(shí)員工派遣工作服務(wù)合同
- 2025版基礎(chǔ)設(shè)施建設(shè)項(xiàng)目退工程款合同樣本3篇
- 二零二五年度木材加工廢棄物處理與資源化利用合同2篇
- 2025年勞動(dòng)力補(bǔ)償福利協(xié)議
- 2025年大學(xué)生健身俱樂部協(xié)議
- 二零二五版新能源車輛充電站合作協(xié)議書下載3篇
- 2025版小產(chǎn)權(quán)房購(gòu)房合同范本:房產(chǎn)交易稅費(fèi)優(yōu)惠政策解析2篇
- 2025年度木雕工藝品行業(yè)信息共享與數(shù)據(jù)服務(wù)合同4篇
- 2025年度個(gè)人二手房買賣協(xié)議書范本:房屋交易全程保險(xiǎn)合同4篇
- 2025年食堂承包經(jīng)營(yíng)餐飲服務(wù)安全檢查與整改協(xié)議3篇
- 茉莉花-附指法鋼琴譜五線譜
- 結(jié)婚函調(diào)報(bào)告表
- SYT 6968-2021 油氣輸送管道工程水平定向鉆穿越設(shè)計(jì)規(guī)范-PDF解密
- 冷庫(kù)制冷負(fù)荷計(jì)算表
- 肩袖損傷護(hù)理查房
- 設(shè)備運(yùn)維管理安全規(guī)范標(biāo)準(zhǔn)
- 辦文辦會(huì)辦事實(shí)務(wù)課件
- 大學(xué)宿舍人際關(guān)系
- 2023光明小升初(語(yǔ)文)試卷
- GB/T 14600-2009電子工業(yè)用氣體氧化亞氮
- 申請(qǐng)使用物業(yè)專項(xiàng)維修資金征求業(yè)主意見表
評(píng)論
0/150
提交評(píng)論