版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
甘肅省定西市2025屆高三最后一模數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知不等式組表示的平面區(qū)域的面積為9,若點,則的最大值為()A.3 B.6 C.9 D.122.已知集合,,則A. B.C. D.3.已知向量滿足,且與的夾角為,則()A. B. C. D.4.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.5.若直線經(jīng)過拋物線的焦點,則()A. B. C.2 D.6.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.7.橢圓的焦點為,點在橢圓上,若,則的大小為()A. B. C. D.8.設(shè)過定點的直線與橢圓:交于不同的兩點,,若原點在以為直徑的圓的外部,則直線的斜率的取值范圍為()A. B.C. D.9.已知集合A={x|x<1},B={x|},則A. B.C. D.10.?dāng)?shù)列滿足:,則數(shù)列前項的和為A. B. C. D.11.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件12.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標(biāo)原點),,則雙曲線C的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù),其中為虛數(shù)單位,則的模為_______________.14.在四面體中,分別是的中點.則下述結(jié)論:①四面體的體積為;②異面直線所成角的正弦值為;③四面體外接球的表面積為;④若用一個與直線垂直,且與四面體的每個面都相交的平面去截該四面體,由此得到一個多邊形截面,則該多邊形截面面積最大值為.其中正確的有_____.(填寫所有正確結(jié)論的編號)15.過圓的圓心且與直線垂直的直線方程為__________.16.函數(shù)的值域為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:,不與坐標(biāo)軸垂直的直線與橢圓交于,兩點.(Ⅰ)若線段的中點坐標(biāo)為,求直線的方程;(Ⅱ)若直線過點,點滿足(,分別為直線,的斜率),求的值.18.(12分)金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學(xué)生.新生接待其實也是和社會溝通的一個平臺.校團(tuán)委、學(xué)生會從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對是否愿意投入到新生接待工作進(jìn)行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:愿意不愿意男生6020女士4040(1)根據(jù)上表說明,能否有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);(2)現(xiàn)從參與問卷調(diào)查且愿意參加新生接待工作的學(xué)生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機(jī)選取3人到火車站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82819.(12分)已知是圓:的直徑,動圓過,兩點,且與直線相切.(1)若直線的方程為,求的方程;(2)在軸上是否存在一個定點,使得以為直徑的圓恰好與軸相切?若存在,求出點的坐標(biāo);若不存在,請說明理由.20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交于、兩點,求的面積.21.(12分)已知,分別是橢圓:的左,右焦點,點在橢圓上,且拋物線的焦點是橢圓的一個焦點.(1)求,的值:(2)過點作不與軸重合的直線,設(shè)與圓相交于A,B兩點,且與橢圓相交于C,D兩點,當(dāng)時,求△的面積.22.(10分)如圖,在直角中,,,,點在線段上.(1)若,求的長;(2)點是線段上一點,,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
分析:先畫出滿足約束條件對應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點,即求出邊界線的交點坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時,由圖可得當(dāng)過點時,取得最大值9,故選C.點睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.2、D【解析】
因為,,所以,,故選D.3、A【解析】
根據(jù)向量的運算法則展開后利用數(shù)量積的性質(zhì)即可.【詳解】.故選:A.【點睛】本題主要考查數(shù)量積的運算,屬于基礎(chǔ)題.4、D【解析】由題意得,函數(shù)點定義域為且,所以定義域關(guān)于原點對稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,故選D.5、B【解析】
計算拋物線的交點為,代入計算得到答案.【詳解】可化為,焦點坐標(biāo)為,故.故選:.【點睛】本題考查了拋物線的焦點,屬于簡單題.6、D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進(jìn)而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.7、C【解析】
根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結(jié)論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點睛】本題考查橢圓的定義,考查余弦定理,考查運算能力,屬于基礎(chǔ)題.8、D【解析】
設(shè)直線:,,,由原點在以為直徑的圓的外部,可得,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理,即可求得答案.【詳解】顯然直線不滿足條件,故可設(shè)直線:,,,由,得,,解得或,,,,,,解得,直線的斜率的取值范圍為.故選:D.【點睛】本題解題關(guān)鍵是掌握橢圓的基礎(chǔ)知識和圓錐曲線與直線交點問題時,通常用直線和圓錐曲線聯(lián)立方程組,通過韋達(dá)定理建立起目標(biāo)的關(guān)系式,考查了分析能力和計算能力,屬于中檔題.9、A【解析】∵集合∴∵集合∴,故選A10、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進(jìn)而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導(dǎo)致計算結(jié)果錯誤.11、B【解析】
試題分析:通過逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題12、C【解析】
利用三角形與相似得,結(jié)合雙曲線的定義求得的關(guān)系,從而求得雙曲線的漸近線方程?!驹斀狻吭O(shè),,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用復(fù)數(shù)模的計算公式求解即可.【詳解】解:由,得,所以.故答案為:.【點睛】本題考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.14、①③④.【解析】
補(bǔ)圖成長方體,在長方體中利用割補(bǔ)法求四面體的體積,和外接球的表面積,以及異面直線的夾角,作出截面即可計算截面面積的最值.【詳解】根據(jù)四面體特征,可以補(bǔ)圖成長方體設(shè)其邊長為,,解得補(bǔ)成長,寬,高分別為的長方體,在長方體中:①四面體的體積為,故正確②異面直線所成角的正弦值等價于邊長為的矩形的對角線夾角正弦值,可得正弦值為,故錯;③四面體外接球就是長方體的外接球,半徑,其表面積為,故正確;④由于,故截面為平行四邊形,可得,設(shè)異面直線與所成的角為,則,算得,.故正確.故答案為:①③④.【點睛】此題考查根據(jù)幾何體求體積,外接球的表面積,異面直線夾角和截面面積最值,關(guān)鍵在于熟練掌握點線面位置關(guān)系的處理方法,補(bǔ)圖法作為解決體積和外接球問題的常用方法,平常需要積累常見幾何體的補(bǔ)圖方法.15、【解析】
根據(jù)與已知直線垂直關(guān)系,設(shè)出所求直線方程,將已知圓圓心坐標(biāo)代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設(shè)為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點睛】本題考查圓的方程、直線方程求法,注意直線垂直關(guān)系的靈活應(yīng)用,屬于基礎(chǔ)題.16、【解析】
利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結(jié)果.【詳解】函數(shù)的定義域為所以函數(shù)的值域為故答案為:【點睛】本題考查的是用配方法求函數(shù)的值域問題,屬基礎(chǔ)題。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)點差法,即可求得直線的斜率,則方程即可求得;(Ⅱ)設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達(dá)定理,根據(jù),即可求得參數(shù)的值.【詳解】(1)設(shè),,則兩式相減,可得.(*)因為線段的中點坐標(biāo)為,所以,.代入(*)式,得.所以直線的斜率.所以直線的方程為,即.(Ⅱ)設(shè)直線:(),聯(lián)立整理得.所以,解得.所以,.所以,所以.所以.因為,所以.【點睛】本題考查中點弦問題的點差法求解,以及利用代數(shù)與幾何關(guān)系求直線方程,涉及韋達(dá)定理的應(yīng)用,屬中檔題.18、(1)有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);(2)詳見解析.【解析】
(1)計算得到,由此可得結(jié)論;(2)根據(jù)分層抽樣原則可得男生和女生人數(shù),由超幾何分布概率公式可求得的所有可能取值所對應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望計算公式計算可得期望.【詳解】(1)∵的觀測值,有的把握認(rèn)為愿意參加新生接待工作與性別有關(guān).(2)根據(jù)分層抽樣方法得:男生有人,女生有人,選取的人中,男生有人,女生有人.則的可能取值有,,,,,的分布列為:.【點睛】本題考查獨立性檢驗、分層抽樣、超幾何分布的分布列和數(shù)學(xué)期望的求解;關(guān)鍵是能夠明確隨機(jī)變量服從于超幾何分布,進(jìn)而利用超幾何分布概率公式求得隨機(jī)變量每個取值所對應(yīng)的概率.19、(1)或.(2)存在,;【解析】
(1)根據(jù)動圓過,兩點,可得圓心在的垂直平分線上,由直線的方程為,可知在直線上;設(shè),由動圓與直線相切可得動圓的半徑為;又由,及垂徑定理即可確定的值,進(jìn)而確定圓的方程.(2)方法一:設(shè),可得圓的半徑為,根據(jù),可得方程為并化簡可得的軌跡方程為.設(shè),,可得的中點,進(jìn)而由兩點間距離公式表示出半徑,表示出到軸的距離,代入化簡即可求得的值,進(jìn)而確定所過定點的坐標(biāo);方法二:同上可得的軌跡方程為,由拋物線定義可求得,表示出線段的中點的坐標(biāo),根據(jù)到軸的距離可得等量關(guān)系,進(jìn)而確定所過定點的坐標(biāo).【詳解】(1)因為過點,,所以圓心在的垂直平分線上.由已知的方程為,且,關(guān)于于坐標(biāo)原點對稱,所以在直線上,故可設(shè).因為與直線相切,所以的半徑為.由已知得,,又,故可得,解得或.故的半徑或,所以的方程為或.(2)法一:設(shè),由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設(shè),,則得,的中點,則以為直徑的圓的半徑為:,到軸的距離為,令,①化簡得,即,故當(dāng)時,①式恒成立.所以存在定點,使得以為直徑的圓與軸相切.法二:設(shè),由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設(shè),因為拋物線的焦點坐標(biāo)為,點在拋物線上,所以,線段的中點的坐標(biāo)為,則到軸的距離為,而,故以為徑的圓與軸切,所以當(dāng)點與重合時,符合題意,所以存在定點,使得以為直徑的圓與軸相切.【點睛】本題考查了圓的標(biāo)準(zhǔn)方程求法,動點軌跡方程的求法,拋物線定義及定點問題的解法綜合應(yīng)用,屬于難題.20、(1),;(2).【解析】
(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標(biāo)方程兩邊同時乘以,結(jié)合可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)計算出直線截圓所得弦長,并計算出原點到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標(biāo)方程是;(2)因為曲線的圓心為,半徑為,圓心到直線的距離為,則弦長.又到直線的距離為,所以.【點睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線與圓中三角形面積的計算,考查計算能力,屬于中等題.21、(1);(2).【解析】
(1)由已知根據(jù)拋物線和橢圓的定義和性質(zhì),可求出,;(2)設(shè)直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡,由根與系數(shù)的關(guān)系得到結(jié)論,繼而求出面積.【詳解】(1)焦點為F(1,0),則F1(1,0),F(xiàn)2(1,0),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 麻雀主題課程設(shè)計意圖
- 連接板沖壓課程設(shè)計
- 算法與計算方法課程設(shè)計
- 2024年學(xué)校安全工作應(yīng)急預(yù)案
- 2024年一年級語文上全冊各單元測試題分解
- 年度其它新型計算機(jī)外圍設(shè)備戰(zhàn)略市場規(guī)劃報告
- 年度碳纖維預(yù)浸布市場分析及競爭策略分析報告
- 2025年度專業(yè)打印紙銷售渠道建設(shè)合同4篇
- 2025年度新能源項目出借咨詢及項目管理協(xié)議4篇
- 2025年新型門窗安裝工程承包合同4篇
- 第21課《鄒忌諷齊王納諫》對比閱讀 部編版語文九年級下冊
- 2024年安全員-C證考試題庫及答案(1000題)
- 餐廚垃圾收運安全操作規(guī)范
- 皮膚內(nèi)科過敏反應(yīng)病例分析
- 電影《獅子王》的視聽語言解析
- 妊娠合并低鉀血癥護(hù)理查房
- 煤礦反三違培訓(xùn)課件
- 2024年中國航空發(fā)動機(jī)集團(tuán)招聘筆試參考題庫含答案解析
- 當(dāng)代中外公司治理典型案例剖析(中科院研究生課件)
- 動力管道設(shè)計手冊-第2版
- 2022年重慶市中考物理試卷A卷(附答案)
評論
0/150
提交評論