版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題8-2立體幾何中的角和距離問題(含探索性問題)目錄TOC\o"1-1"\h\u專題8-2立體幾何中的角和距離問題(含探索性問題) 1 1題型一:異面直線所成角(含定值,最值,范圍) 1題型二:線面角(定值,最值) 12題型三:線面角探索性問題 32題型四:二面角(定值,最值) 47題型五:二面角探索性問題 68題型六:點(diǎn)到平面距離問題 80 95題型一:異面直線所成角(含定值,最值,范圍)【典例分析】例題1.(2022·山東泰安·二模)已知SKIPIF1<0,SKIPIF1<0兩點(diǎn)都在以SKIPIF1<0為直徑的球SKIPIF1<0的球面上,SKIPIF1<0,SKIPIF1<0,若球SKIPIF1<0的體積為SKIPIF1<0,則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例題2.(2022·江蘇省橫林高級(jí)中學(xué)高二階段練習(xí))在正方體SKIPIF1<0中,SKIPIF1<0是棱SKIPIF1<0的中點(diǎn),SKIPIF1<0是底面SKIPIF1<0內(nèi)(包括邊界)的一個(gè)動(dòng)點(diǎn),若SKIPIF1<0平面SKIPIF1<0,則異面直線SKIPIF1<0與SKIPIF1<0所成角的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例題3.(2022·湖北·荊門市東寶中學(xué)高二期中)如圖,在四棱錐SKIPIF1<0中,已知SKIPIF1<0平面SKIPIF1<0,且四邊形SKIPIF1<0為直角梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求平面SKIPIF1<0與平面SKIPIF1<0所成銳二面角的余弦值;(2)點(diǎn)SKIPIF1<0是線段SKIPIF1<0上的動(dòng)點(diǎn),當(dāng)直線SKIPIF1<0與SKIPIF1<0所成的角最小時(shí),求線段SKIPIF1<0的長(zhǎng).【提分秘籍】設(shè)異面直線SKIPIF1<0和SKIPIF1<0所成角為SKIPIF1<0,其方向向量分別為SKIPIF1<0,SKIPIF1<0;則異面直線所成角向量求法:①SKIPIF1<0②SKIPIF1<0③涉及到異面直線所成角所成范圍或最值問題時(shí),根據(jù)得到的解析式SKIPIF1<0,可通過配方為二次函數(shù),或者基本不等式,或者求導(dǎo),求出范圍或者最值.【變式演練】1.(2022·江蘇·高二階段練習(xí))在長(zhǎng)方體SKIPIF1<0中,SKIPIF1<0為空間內(nèi)一點(diǎn),SKIPIF1<0為底面SKIPIF1<0內(nèi)一點(diǎn),且滿足SKIPIF1<0,異面直線SKIPIF1<0與SKIPIF1<0所成角為SKIPIF1<0,則當(dāng)線段SKIPIF1<0的長(zhǎng)度取最小值時(shí),SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(多選)(2022·河南·高二期中)在三棱錐SKIPIF1<0中,平面SKIPIF1<0平面BCD,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等邊三角形,E是棱AC的中點(diǎn),F(xiàn)是棱AD上一點(diǎn),若異面直線DE與BF所成角的余弦值為SKIPIF1<0,則AF的值可能為(
)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<03.(多選)(2022·浙江·余姚中學(xué)高二階段練習(xí))如圖,在三棱錐SKIPIF1<0中,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0與SKIPIF1<0均為等腰直角三角形,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是線段SKIPIF1<0上的動(dòng)點(diǎn)(不包括端點(diǎn)),若線段SKIPIF1<0上存在點(diǎn)SKIPIF1<0,使得異面直線SKIPIF1<0與SKIPIF1<0成SKIPIF1<0的角,則線段SKIPIF1<0的長(zhǎng)度可能為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·云南·玉溪市民族中學(xué)模擬預(yù)測(cè)(文))如圖,在直三棱柱SKIPIF1<0中,D,E,F(xiàn)分別是SKIPIF1<0的中點(diǎn),SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,求異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值.5.(2022·天津·二模)如圖所示,在幾何體ABCDEF中,四邊形ABCD為直角梯形,AD∥BC,AB⊥AD,AE⊥底面ABCD,AE∥CF,AD=3,AB=BC=AE=2,CF=1.(1)求證:BF∥平面ADE;(2)求直線BE與直線DF所成角的余弦值;題型二:線面角(定值,最值)【典例分析】例題1.(2022·全國(guó)·模擬預(yù)測(cè))如圖,已知四棱錐SKIPIF1<0的底面SKIPIF1<0為正方形,二面角SKIPIF1<0為直二面角,SKIPIF1<0,點(diǎn)SKIPIF1<0為線段AD的中點(diǎn).(1)證明:SKIPIF1<0;(2)若SKIPIF1<0,點(diǎn)SKIPIF1<0是線段SKIPIF1<0上靠近點(diǎn)SKIPIF1<0的三等分點(diǎn),求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.例題2.(2022·湖南·模擬預(yù)測(cè))故宮太和殿是中國(guó)形制最高的宮殿,其建筑采用了重檐廡殿頂?shù)奈蓓敇邮?,廡殿頂是“四出水”的五脊四坡式,由一條正脊和四條垂脊組成,因此又稱五脊殿.由于屋頂有四面斜坡,故又稱四阿頂.如圖,某幾何體ABCDEF有五個(gè)面,其形狀與四阿頂相類似.已知底面SKIPIF1<0為矩形,SKIPIF1<0,SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn).(1)證明:SKIPIF1<0且SKIPIF1<0平面SKIPIF1<0.(2)若二面角SKIPIF1<0為SKIPIF1<0,求SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.例題3.(2022·河北·模擬預(yù)測(cè)(理))如圖1所示,在平行四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0折起,使得二面角SKIPIF1<0的大小為SKIPIF1<0,如圖2所示,點(diǎn)SKIPIF1<0為棱SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0為棱SKIPIF1<0上一動(dòng)點(diǎn).(1)證明:SKIPIF1<0;(2)若四棱錐SKIPIF1<0的體積為SKIPIF1<0,求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值的最大值.例題4.(2022·全國(guó)·模擬預(yù)測(cè))已知四棱錐SKIPIF1<0的底面為菱形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0.SKIPIF1<0與底面SKIPIF1<0所成角為SKIPIF1<0,設(shè)平面SKIPIF1<0與平面SKIPIF1<0交線為SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)SKIPIF1<0為SKIPIF1<0上的動(dòng)點(diǎn),且點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0在平面SKIPIF1<0同側(cè),求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值的取值范圍.【提分秘籍】設(shè)直線SKIPIF1<0的方向向量為SKIPIF1<0,平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,直線SKIPIF1<0與平面SKIPIF1<0所成的角為SKIPIF1<0,則①SKIPIF1<0;②SKIPIF1<0.③涉及到線面角范圍或最值問題時(shí),根據(jù)得到的解析式SKIPIF1<0,可通過配方為二次函數(shù),或者基本不等式,或者求導(dǎo),求出范圍或者最值.【變式演練】1.(2022·全國(guó)·安陽市第二中學(xué)模擬預(yù)測(cè)(理))如圖所示,直三棱柱SKIPIF1<0中SKIPIF1<0,SKIPIF1<0,點(diǎn)M為線段SKIPIF1<0,SKIPIF1<0的交點(diǎn),點(diǎn)P,Q分別為線段SKIPIF1<0,AB的中點(diǎn),延長(zhǎng)SKIPIF1<0至點(diǎn)D,使得SKIPIF1<0,連接CD,QD,CQ.(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)若點(diǎn)M在平面ABP內(nèi)的投影恰好為SKIPIF1<0的重心,SKIPIF1<0,求直線MD與平面SKIPIF1<0所成角的正弦值.2.(2022·浙江溫州·三模)如圖是一個(gè)四棱柱被一個(gè)平面所截的幾何體,底面SKIPIF1<0是正方形,M是SKIPIF1<0的中點(diǎn),SKIPIF1<0.(1)證明:平面SKIPIF1<0平面SKIPIF1<0;(2)求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.3.(2022·山東日照·三模)如圖,在斜三棱柱SKIPIF1<0中,側(cè)面SKIPIF1<0側(cè)面SKIPIF1<0,M為SKIPIF1<0上的動(dòng)點(diǎn).(1)當(dāng)M為SKIPIF1<0的中點(diǎn)時(shí),證明:SKIPIF1<0;(2)求SKIPIF1<0與平面SKIPIF1<0所成角的正弦值的取值范圍.4.(2022·江蘇江蘇·三模)如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,SKIPIF1<0,點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,SKIPIF1<0.(1)若SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)共面;(2)求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦的最大值.題型三:線面角探索性問題【典例分析】例題1.(2022·天津·模擬預(yù)測(cè))如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,底面SKIPIF1<0是直角梯形,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為棱SKIPIF1<0上的點(diǎn),且SKIPIF1<0(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求二面角SKIPIF1<0的余弦值;(3)設(shè)SKIPIF1<0為棱SKIPIF1<0上的點(diǎn)(不與SKIPIF1<0、SKIPIF1<0重合),且直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0,求SKIPIF1<0的值.例題2.(2022·天津河?xùn)|·二模)如圖所示,直角梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0垂直SKIPIF1<0,SKIPIF1<0,四邊形SKIPIF1<0為矩形,SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0.(1)求證:SKIPIF1<0∥平面SKIPIF1<0;(2)求平面SKIPIF1<0與平面SKIPIF1<0所成二面角的正弦值;(3)在線段SKIPIF1<0上是否存在點(diǎn)SKIPIF1<0,使得直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0,若存在,求出線段SKIPIF1<0的長(zhǎng),若不存在,請(qǐng)說明理由.例題3.(2022·安徽馬鞍山·三模(理))如圖所示,四棱錐SKIPIF1<0,底面在以SKIPIF1<0為直徑的圓SKIPIF1<0上,SKIPIF1<0圓SKIPIF1<0,SKIPIF1<0為等邊三角形,SKIPIF1<0,SKIPIF1<0.(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)線段SKIPIF1<0上是否存在一點(diǎn)SKIPIF1<0使得直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0?若存在,求出SKIPIF1<0;若不存在,請(qǐng)說明理由.【提分秘籍】探索性問題,動(dòng)點(diǎn)的位置一般可以假設(shè)SKIPIF1<0,再結(jié)合向量加,減法,求解;另外如果動(dòng)點(diǎn)在坐標(biāo)軸上,可以直接假設(shè)動(dòng)點(diǎn)坐標(biāo);【變式演練】1.(2022·天津·一模)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,SKIPIF1<0,AP⊥平面ABCD,SKIPIF1<0,點(diǎn)M、N分別為線段BC和PD的中點(diǎn).(1)求證:AN⊥平面PDM;(2)求平面PDM與平面PDC夾角的正弦值;(3)在線段PC(不包括端點(diǎn))上是否存在一點(diǎn)E,使得直線BE與平面PDC所成角的正弦值為SKIPIF1<0,若存在,求出線身PE的長(zhǎng):若不存在,請(qǐng)說明理由.2.(2022·黑龍江·佳木斯一中模擬預(yù)測(cè)(理))如圖,四棱錐SKIPIF1<0的底面為菱形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0底面ABCD,E,F(xiàn)分別是線段PB,PD的中點(diǎn),G是線段PC上的一點(diǎn).(1)若SKIPIF1<0,證明直線AG在平面AEF內(nèi);(2)若直線AG與平面AEF所成角的正弦值為SKIPIF1<0,試確定SKIPIF1<0的值.3.(2022·河南·汝州市第一高級(jí)中學(xué)模擬預(yù)測(cè)(理))如圖,在三棱柱SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0分別是SKIPIF1<0的中點(diǎn).(1)求證:SKIPIF1<0//平面SKIPIF1<0;(2)在線段SKIPIF1<0上是否存在點(diǎn)SKIPIF1<0,使得直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值是SKIPIF1<0?若存在,則求出SKIPIF1<0的值;若不存在,請(qǐng)說明理由.題型四:二面角(定值,最值)【典例分析】例題1.(2022·四川·石室中學(xué)模擬預(yù)測(cè)(理))如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是棱SKIPIF1<0的中點(diǎn),且SKIPIF1<0SKIPIF1<0平面SKIPIF1<0(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,求二面角SKIPIF1<0的正弦值.例題2.(2022·四川·廣安二中模擬預(yù)測(cè)(理))在四棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0與平面SKIPIF1<0所成角SKIPIF1<0,又SKIPIF1<0于SKIPIF1<0,SKIPIF1<0于SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)求二面角SKIPIF1<0的余弦值.例題3.(2022·內(nèi)蒙古包頭·二模(理))已知直三棱柱SKIPIF1<0中,側(cè)面SKIPIF1<0為正方形.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0和SKIPIF1<0上的點(diǎn),且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為棱SKIPIF1<0上的點(diǎn),SKIPIF1<0.(1)證明:SKIPIF1<0,且SKIPIF1<0;(2)當(dāng)SKIPIF1<0為何值時(shí),平面SKIPIF1<0與平面SKIPIF1<0所成的二面角的正弦值最小?例題4.(2022·安徽省舒城中學(xué)一模(理))如圖所示,三棱錐SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,平面SKIPIF1<0經(jīng)過棱SKIPIF1<0的中點(diǎn)SKIPIF1<0,與棱SKIPIF1<0,SKIPIF1<0分別交于點(diǎn)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,點(diǎn)SKIPIF1<0是直線SKIPIF1<0上的動(dòng)點(diǎn),求平面SKIPIF1<0與平面SKIPIF1<0所成銳二面角的余弦值的最大值.【提分秘籍】(1)如圖①,SKIPIF1<0,SKIPIF1<0是二面角SKIPIF1<0的兩個(gè)面內(nèi)與棱SKIPIF1<0垂直的直線,則二面角的大小SKIPIF1<0.(2)如圖②③,SKIPIF1<0,SKIPIF1<0分別是二面角SKIPIF1<0的兩個(gè)半平面SKIPIF1<0的法向量,則二面角的大小SKIPIF1<0滿足:①SKIPIF1<0;②SKIPIF1<0若二面角為銳二面角(取正),則SKIPIF1<0;若二面角為頓二面角(取負(fù)),則SKIPIF1<0;(特別說明,有些題目會(huì)提醒求銳二面角;有些題目沒有明顯提示,需考生自己看圖判定為銳二面角還是鈍二面角.)③涉及到二面角范圍或最值問題時(shí),根據(jù)得到的解析式SKIPIF1<0,可通過配方為二次函數(shù),或者基本不等式,或者求導(dǎo),求出范圍或者最值.【變式演練】1.(2022·山東青島·一模)如圖①,在梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),以SKIPIF1<0為折痕把SKIPIF1<0折起,連接SKIPIF1<0,SKIPIF1<0,得到如圖②的幾何體,在圖②的幾何體中解答下列兩個(gè)問題.(1)證明:SKIPIF1<0;(2)請(qǐng)從以下兩個(gè)條件中選擇一個(gè)作為已知條件,求二面角SKIPIF1<0的余弦值.①四棱錐SKIPIF1<0的體積為2;②直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0.注:如果選擇兩個(gè)條件分別解答,按第一個(gè)解答計(jì)分.2.(2022·全國(guó)·模擬預(yù)測(cè))如圖①,平面圖形ABCDE中,SKIPIF1<0,四邊形BCDE是等腰梯形,SKIPIF1<0,SKIPIF1<0.沿BE將△ABE折起,使平面SKIPIF1<0平面BCDE,得到四棱錐SKIPIF1<0,連接CE,如圖②.(1)設(shè)平面ABC與平面ADE的交線為l,求證:SKIPIF1<0;(2)當(dāng)四棱錐SKIPIF1<0的體積為SKIPIF1<0時(shí),求側(cè)面ACD與側(cè)面ABE所成的二面角的平面角.3.(2022·山東濰坊·模擬預(yù)測(cè))如圖,正三棱柱ABC?A1B1C1的所有棱長(zhǎng)均為2,D為棱BB1(不包括端點(diǎn))上一動(dòng)點(diǎn),E是AB的中點(diǎn).(1)若AD⊥A1C,求BD的長(zhǎng);(2)當(dāng)D在棱BB1(不包括端點(diǎn))上運(yùn)動(dòng)時(shí),求平面ADC1與平面ABC的夾角的余弦值的取值范圍.4.(2022·全國(guó)·長(zhǎng)郡中學(xué)模擬預(yù)測(cè))已知直三棱柱SKIPIF1<0中,側(cè)面SKIPIF1<0為正方形,SKIPIF1<0,E,F(xiàn)分別為SKIPIF1<0和SKIPIF1<0的中點(diǎn),D為棱SKIPIF1<0上的點(diǎn).SKIPIF1<0(1)證明:SKIPIF1<0;(2)當(dāng)SKIPIF1<0為何值時(shí),面SKIPIF1<0與面SKIPIF1<0所成的二面角的正弦值最小?題型五:二面角探索性問題【典例分析】例題1.(2022·浙江紹興·一模)在四棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若平面SKIPIF1<0平面SKIPIF1<0,二面角SKIPIF1<0的余弦值為SKIPIF1<0,求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.例題2.(2022·四川·成都七中模擬預(yù)測(cè)(理))如圖1,在邊長(zhǎng)為4的菱形SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0分別是邊SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0.沿SKIPIF1<0將SKIPIF1<0翻折到SKIPIF1<0的位置,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得到如圖2所示的五棱錐SKIPIF1<0.(1)在翻折過程中是否總有平面SKIPIF1<0平面SKIPIF1<0?證明你的結(jié)論;(2)當(dāng)四棱錐SKIPIF1<0體積最大時(shí),求直線SKIPIF1<0和平面SKIPIF1<0所成角的正弦值;(3)在(2)的條件下,在線段SKIPIF1<0上是否存在一點(diǎn)SKIPIF1<0,使得二面角SKIPIF1<0的平面角的余弦值為SKIPIF1<0?若存在,試確定點(diǎn)SKIPIF1<0的位置;若不存在,請(qǐng)說明理由.例題3.(2022·江蘇·南京外國(guó)語學(xué)校模擬預(yù)測(cè))如圖,在三棱柱SKIPIF1<0中,底面SKIPIF1<0是邊長(zhǎng)為2的正三角形,側(cè)面SKIPIF1<0是菱形,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是棱SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0是棱SKIPIF1<0上一點(diǎn),且SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)若三棱錐SKIPIF1<0的體積為1,且二面角SKIPIF1<0的余弦值為SKIPIF1<0,求SKIPIF1<0的值.【提分秘籍】探索性問題,動(dòng)點(diǎn)的位置一般可以假設(shè)SKIPIF1<0,再結(jié)合向量加,減法,求解;另外如果動(dòng)點(diǎn)在坐標(biāo)軸上,可以直接假設(shè)動(dòng)點(diǎn)坐標(biāo);【變式演練】1.(2022·湖北武漢·模擬預(yù)測(cè))如圖,在四面體SKIPIF1<0中,SKIPIF1<0是正三角形,SKIPIF1<0是直角三角形,SKIPIF1<0.(1)求證:SKIPIF1<0;(2)已知點(diǎn)E在棱SKIPIF1<0上,且SKIPIF1<0,設(shè)SKIPIF1<0,若二面角SKIPIF1<0的余弦值為SKIPIF1<0,求SKIPIF1<0.2.(2022·江蘇揚(yáng)州·模擬預(yù)測(cè))如圖所示,已知長(zhǎng)方形SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn)將SKIPIF1<0沿SKIPIF1<0折起,使得SKIPIF1<0.(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)若點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且平面SKIPIF1<0與平面SKIPIF1<0所成銳二面角的余弦值為SKIPIF1<0,試確定點(diǎn)SKIPIF1<0的具體位置.3.(2022·四川省內(nèi)江市第六中學(xué)模擬預(yù)測(cè)(理))如圖,SKIPIF1<0是邊長(zhǎng)為6的正三角形,點(diǎn)E,F(xiàn),N分別在邊AB,AC,BC上,且SKIPIF1<0,SKIPIF1<0為BC邊的中點(diǎn),AM交EF于點(diǎn)SKIPIF1<0,沿EF將三角形AEF折到DEF的位置,使SKIPIF1<0.(1)證明:平面SKIPIF1<0平面SKIPIF1<0;(2)試探究在線段DM上是否存在點(diǎn)SKIPIF1<0,使二面角SKIPIF1<0的大小為SKIPIF1<0?若存在,求出SKIPIF1<0的值;若不存在,請(qǐng)說明理由.題型六:點(diǎn)到平面距離問題【典例分析】例題1.(2022·浙江臺(tái)州·模擬預(yù)測(cè))如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0均為等腰直角三角形,SKIPIF1<0,SKIPIF1<0,且平面SKIPIF1<0平面SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若SKIPIF1<0,求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.例題2.(2022·北京·北師大實(shí)驗(yàn)中學(xué)模擬預(yù)測(cè))如圖,在三棱錐SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,連接SKIPIF1<0.(1)求證:SKIPIF1<0;(2)求平面SKIPIF1<0與平面SKIPIF1<0所成角的余弦值;(3)求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.例題3.(2022·天津市濱海新區(qū)塘沽第一中學(xué)模擬預(yù)測(cè))在如圖所示的幾何體中,四邊形SKIPIF1<0是正方形,四邊形SKIPIF1<0是梯形,SKIPIF1<0,SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0.(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求二面角SKIPIF1<0的大小;(3)已知點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,且異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0,求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.【提分秘籍】點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離如圖,已知平面SKIPIF1<0的法向量為SKIPIF1<0,SKIPIF1<0是平面SKIPIF1<0內(nèi)的定點(diǎn),SKIPIF1<0是平面SKIPIF1<0外一點(diǎn).過點(diǎn)SKIPIF1<0作平面SKIPIF1<0的垂線SKIPIF1<0,交平面SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0是直線SKIPIF1<0的方向向量,且點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離就是SKIPIF1<0在直線SKIPIF1<0上的投影向量SKIPIF1<0的長(zhǎng)度.SKIPIF1<0【變式演練】1.(2022·北京東城·三模)如圖,在正三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn).(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)求直線SKIPIF1<0與平面SKIPIF1<0所成角的大小;(3)線段SKIPIF1<0上是否存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0?若存在,求出點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離;若不存在,說明理由.2.(2022·北京·人大附中模擬預(yù)測(cè))如圖,三棱柱SKIPIF1<0中,面SKIPIF1<0面SKIPIF1<0,SKIPIF1<0.過SKIPIF1<0的平面交線段SKIPIF1<0于點(diǎn)SKIPIF1<0(不與端點(diǎn)重合),交線段SKIPIF1<0于點(diǎn)SKIPIF1<0.(1)求證:四邊形SKIPIF1<0為平行四邊形;(2)若SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.3.(2022·黑龍江·哈九中模擬預(yù)測(cè)(理))圖1是直角梯形SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,以SKIPIF1<0為折痕將SKIPIF1<0折起,使點(diǎn)SKIPIF1<0到達(dá)SKIPIF1<0的位置,且SKIPIF1<0,如圖2.(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)若點(diǎn)P為線段SKIPIF1<0上靠近點(diǎn)SKIPIF1<0的三等分點(diǎn),求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離?1.(2022·青?!や掖ㄖ袑W(xué)一模(理))在各棱長(zhǎng)均相等的直三棱柱SKIPIF1<0中,點(diǎn)M在SKIPIF1<0上SKIPIF1<0,點(diǎn)N在AC上且SKIPIF1<0,則異面直線SKIPIF1<0與NB所成角的正切值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·河南開封·一模(文))如圖,在正方體SKIPIF1<0中,點(diǎn)M,N分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),則下述結(jié)論中正確的個(gè)數(shù)為(
)①SKIPIF1<0∥平面SKIPIF1<0;
②平面SKIPIF1<0平面SKIPIF1<0;③直線SKIPIF1<0與SKIPIF1<0所成的角為SKIPIF1<0;
④直線SKIPIF1<0與平面SKIPIF1<0所成的角為SKIPIF1<0.A.1 B.2 C.3 D.43.(2022·山東·肥城市教學(xué)研究中心模擬預(yù)測(cè))在正三棱錐SKIPIF1<0中,底面SKIPIF1<0是邊長(zhǎng)為SKIPIF1<0正三角形,SKIPIF1<0是SKIPIF1<0的中點(diǎn),若直線SKIPIF1<0和平面SKIPIF1<0所成的角為SKIPIF1<0,則三棱錐外接球的表面積為SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·江西·新余四中模擬預(yù)測(cè)(理))如圖,在正方體SKIPIF1<0中,E,F(xiàn)分別為棱SKIPIF1<0,SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·河南鄭州·二模(理))如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E是棱AB的中點(diǎn),則點(diǎn)E到平面ACD1的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·江蘇·揚(yáng)中市第二高級(jí)中學(xué)模擬預(yù)測(cè))在直三棱柱SKIPIF1<0中,底面是等腰直角三角形,SKIPIF1<0,側(cè)棱SKIPIF1<0,D,E分別是SKIPIF1<0與SKIPIF1<0的中點(diǎn),點(diǎn)E在平面ABD上的射影是SKIPIF1<0的重心G,則點(diǎn)SKIPIF1<0到平面ABD的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2022·四川瀘州·一模(文))在棱長(zhǎng)為1的正方體SKIPIF1<0中,點(diǎn)M在對(duì)角線SKIPIF1<0上(點(diǎn)M與A,SKIPIF1<0不重合),則下列結(jié)論中錯(cuò)誤的是(
)A.線段SKIPIF1<0與SKIPIF1<0的長(zhǎng)度始終相等B.存在點(diǎn)M,使得SKIPIF1<0∥平面SKIPIF1<0C.存在點(diǎn)M,使得直線SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0D.若N是SKIPIF1<0上一動(dòng)點(diǎn),則SKIPIF1<0的最小值為SKIPIF1<08.(2022·浙江嘉興·模擬預(yù)測(cè))如圖,在矩形SKIPIF1<0中,SKIPIF1<0,E,F(xiàn),G,H分別為邊SKIPIF1<0的中點(diǎn),將SKIPIF1<0分別沿直線SKIPIF1<0翻折形成四棱錐SKIPIF1<0,下列說法正確的是(
)A.異面直線SKIPIF1<0所成角的取值范圍是SKIPIF1<0 B.異面直線SKIPIF1<0所成角的取值范圍是SKIPIF1<0C.異面直線SKIPIF1<0所成角的取值范圍是SKIPIF1<0 D.異面直線SKIPIF1<0所成角的取值范圍是SKIPIF1<0二、多選題9.(2022·全國(guó)·南京外國(guó)語學(xué)校模擬預(yù)測(cè))在直三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0是線段SKIPIF1<0上的點(diǎn),則下列說法正確的是(
)A.SKIPIF1<0B.存在點(diǎn)SKIPIF1<0,使得直線SKIPIF1<0與SKIPIF1<0所成的角是SKIPIF1<0C.當(dāng)點(diǎn)SKIPIF1<0是線段SKIPIF1<0的中點(diǎn)時(shí),三棱錐SKIPIF1<0外接球的表面積是SKIPIF1<0D.當(dāng)點(diǎn)SKIPIF1<0是線段SKIPIF1<0的中點(diǎn)時(shí),直線SKIPIF1<0與平面SKIPIF1<0所成角的正切值為SKIPIF1<0.10.(2022·江蘇省木瀆高級(jí)中學(xué)模擬預(yù)測(cè))如圖,四棱錐中,底面ABCD是正方形,SKIPIF1<0平面SKIPIF1<0,O,P分別是SKIPIF1<0的中點(diǎn),M是棱SD上的動(dòng)點(diǎn),則下列選項(xiàng)正確的是(
)A.SKIPIF1<0B.存在點(diǎn)M,使SKIPIF1<0平面SBCC.存在點(diǎn)M,使直線OM與AB所成的角為30°D.點(diǎn)M到平面ABCD與平面SAB的距離和為定值11.(2022·山東煙臺(tái)·一模)如圖,正三棱柱SKIPIF1<0中,底面ABC是邊長(zhǎng)為2的等邊三角形,SKIPIF1<0,D為BC中點(diǎn),則(
)A.直線SKIPIF1<0平面SKIPIF1<0B.點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州電力職業(yè)技術(shù)學(xué)院《Office高級(jí)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州財(cái)經(jīng)職業(yè)學(xué)院《路基路面B》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽幼兒師范高等??茖W(xué)校《照明設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025湖北建筑安全員B證考試題庫附答案
- 2025廣東省安全員知識(shí)題庫及答案
- 貴陽康養(yǎng)職業(yè)大學(xué)《計(jì)量經(jīng)濟(jì)學(xué)基礎(chǔ)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州中醫(yī)藥大學(xué)《播音與主持基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025江西省安全員考試題庫及答案
- 2025安徽省安全員-C證考試(專職安全員)題庫附答案
- 廣州醫(yī)科大學(xué)《電影中的法律問題》2023-2024學(xué)年第一學(xué)期期末試卷
- 安徽省蕪湖市2023-2024學(xué)年高一上學(xué)期期末考試 生物 含解析
- 《新媒體營(yíng)銷與策劃》考試復(fù)習(xí)題庫(含答案)
- 數(shù)詞、介詞、形容詞(副詞)與語法填空(分層訓(xùn)練)(解析版)-【高頻考點(diǎn)】2022年高考英語二輪復(fù)習(xí)講義+分層訓(xùn)練(浙江專用)
- 保險(xiǎn)公司優(yōu)秀員工個(gè)人先進(jìn)事跡材料【九篇】
- 浙江寧波廣播電視集團(tuán)發(fā)射中心招考聘用筆試參考題庫答案解析
- 急性心衰搶救流程
- 新湘教版地理必修第一冊(cè)知識(shí)點(diǎn)總結(jié)
- 四年級(jí)上冊(cè)科學(xué)全冊(cè)知識(shí)點(diǎn)(2022年新教科版)
- 施工機(jī)械施工方案
- 哈爾濱市城市規(guī)劃管理技術(shù)規(guī)定
- 加拿大——文化ppt
評(píng)論
0/150
提交評(píng)論