




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
南昌縣蓮塘第一中學2025屆高考臨考沖刺數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.2.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.3.在展開式中的常數(shù)項為A.1 B.2 C.3 D.74.《周易》歷來被人們視作儒家群經(jīng)之首,它表現(xiàn)了古代中華民族對萬事萬物的深刻而又樸素的認識,是中華人文文化的基礎,它反映出中國古代的二進制計數(shù)的思想方法.我們用近代術語解釋為:把陽爻“-”當作數(shù)字“1”,把陰爻“--”當作數(shù)字“0”,則八卦所代表的數(shù)表示如下:卦名符號表示的二進制數(shù)表示的十進制數(shù)坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“”表示的十進制數(shù)是()A.18 B.17 C.16 D.155.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個數(shù)為()A.4 B.3 C.2 D.16.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.7.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.8.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.9.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.310.已知向量,,設函數(shù),則下列關于函數(shù)的性質(zhì)的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數(shù)11.設命題p:>1,n2>2n,則p為()A. B.C. D.12.已知等比數(shù)列的各項均為正數(shù),設其前n項和,若(),則()A.30 B. C. D.62二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,雙曲線的一條準線與兩條漸近線所圍成的三角形的面積為______.14.設等比數(shù)列的前項和為,若,則數(shù)列的公比是.15.設、分別為橢圓:的左、右兩個焦點,過作斜率為1的直線,交于、兩點,則________16.在等比數(shù)列中,,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在銳角三角形中,角的對邊分別為.已知成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)若的面積為求的值.18.(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點個數(shù).19.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)設點,若直線與曲線相交于、兩點,求的值20.(12分)某調(diào)查機構對某校學生做了一個是否同意生“二孩”抽樣調(diào)查,該調(diào)查機構從該校隨機抽查了100名不同性別的學生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計情況如下表:同意不同意合計男生a5女生40d合計100(1)求a,d的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認為是否同意父母生“二孩”與性別有關?請說明理由;(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有學生中,采用隨機抽樣的方法抽取4位學生進行長期跟蹤調(diào)查,記被抽取的4位學生中持“同意”態(tài)度的人數(shù)為X,求X的分布列及數(shù)學期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63521.(12分)橢圓:()的離心率為,它的四個頂點構成的四邊形面積為.(1)求橢圓的方程;(2)設是直線上任意一點,過點作圓的兩條切線,切點分別為,,求證:直線恒過一個定點.22.(10分)已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實數(shù)x的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準線方程為,,過作垂直直線于,由拋物線的定義可知,連結,當是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關系,轉(zhuǎn)化思想的應用,屬于基礎題.2、C【解析】
以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結合思想和向量法的應用,屬于中檔題.3、D【解析】
求出展開項中的常數(shù)項及含的項,問題得解?!驹斀狻空归_項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉(zhuǎn)化思想,考查計算能力,屬于基礎題。4、B【解析】
由題意可知“屯”卦符號“”表示二進制數(shù)字010001,將其轉(zhuǎn)化為十進制數(shù)即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進制數(shù)字010001,轉(zhuǎn)化為十進制數(shù)的計算為1×20+1×24=1.故選:B.【點睛】本題主要考查數(shù)制是轉(zhuǎn)化,新定義知識的應用等,意在考查學生的轉(zhuǎn)化能力和計算求解能力.5、A【解析】
由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項.【點睛】考查集合并集運算,屬于簡單題.6、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.7、A【解析】
由余弦定理求出角,再由三角形面積公式計算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點睛】本題主要考查了余弦定理的應用,三角形的面積公式,考查了學生的運算求解能力.8、D【解析】
集合.為自然數(shù)集,由此能求出結果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【點睛】本題考查命題真假的判斷、元素與集合的關系、集合與集合的關系等基礎知識,考查運算求解能力,是基礎題.9、A【解析】
根據(jù)正切函數(shù)的圖象求出A、B兩點的坐標,再求出向量的坐標,根據(jù)向量數(shù)量積的坐標運算求出結果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運算,屬于綜合題,但是難度不大,解題關鍵是利用圖象與正切函數(shù)圖象求出坐標,再根據(jù)向量數(shù)量積的坐標運算可得結果,屬于簡單題.10、D【解析】
當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數(shù).本題選擇D選項.11、C【解析】根據(jù)命題的否定,可以寫出:,所以選C.12、B【解析】
根據(jù),分別令,結合等比數(shù)列的通項公式,得到關于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數(shù)列前n項和公式進行求解即可.【詳解】設等比數(shù)列的公比為,由題意可知中:.由,分別令,可得、,由等比數(shù)列的通項公式可得:,因此.故選:B【點睛】本題考查了等比數(shù)列的通項公式和前n項和公式的應用,考查了數(shù)學運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出雙曲線的漸近線方程,求出準線方程,求出三角形的頂點的坐標,然后求解面積.【詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準線方程為,雙曲線的漸近線方程為:,可得準線方程與雙曲線的兩條漸近線所圍成的三角形的頂點的坐標,,,,則三角形的面積為.故答案為:【點睛】本題考查雙曲線方程的應用,雙曲線的簡單性質(zhì)的應用,考查計算能力,屬于中檔題.14、.【解析】
當q=1時,.當時,,所以.15、【解析】
由橢圓的標準方程,求出焦點的坐標,寫出直線方程,與橢圓方程聯(lián)立,求出弦長,利用定義可得,進而求出?!驹斀狻坑芍?,焦點,所以直線:,代入得,即,設,,故由定義有,,所以?!军c睛】本題主要考查橢圓的定義、橢圓的簡單幾何性質(zhì)、以及直線與橢圓位置關系中弦長的求法,注意直線過焦點,位置特殊,采取合適的弦長公式,簡化運算。16、1【解析】
設等比數(shù)列的公比為,再根據(jù)題意用基本量法求解公比,進而利用等比數(shù)列項之間的關系得即可.【詳解】設等比數(shù)列的公比為.由,得,解得.又由,得.則.故答案為:1【點睛】本題主要考查了等比數(shù)列基本量的求解方法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)成等差數(shù)列與三角形內(nèi)角和可知,再利用兩角和的正切公式,代入化簡可得,同理根據(jù)三角形內(nèi)角和與余弦的兩角和公式與等比數(shù)列的性質(zhì)可求得,聯(lián)立即可求解求的值.(2)由(1)可知,再根據(jù)同角三角函數(shù)的關系與正弦定理可求得,再結合的面積為利用面積公式求解即可.【詳解】解:成等差數(shù)列,可得而,即,展開化簡得,因為,故①又成等比數(shù)列,可得,即,可得聯(lián)立解得(負的舍去),可得銳角;由可得,由為銳角,解得,因為為銳角,故可得,由正弦定理可得,又的面積為可得,解得.【點睛】本題主要考查了等差等比中項的運用以及正切的和差角公式以及同角三角函數(shù)關系等.同時也考查了正弦定理與面積公式在解三角形中的運用,屬于中檔題.18、(1);(2)極小值;(3)函數(shù)的零點個數(shù)為.【解析】
(1)求出和的值,利用點斜式可得出所求切線的方程;(2)利用導數(shù)分析函數(shù)的單調(diào)性,進而可得出該函數(shù)的極小值;(3)由當時,以及,結合函數(shù)在區(qū)間上的單調(diào)性可得出函數(shù)的零點個數(shù).【詳解】(1)因為,所以.所以,.所以曲線在點處的切線為;(2)因為,令,得或.列表如下:0極大值極小值所以,函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,所以,當時,函數(shù)有極小值;(3)當時,,且.由(2)可知,函數(shù)在上單調(diào)遞增,所以函數(shù)的零點個數(shù)為.【點睛】本題考查利用導數(shù)求函數(shù)的切線方程、極值以及利用導數(shù)研究函數(shù)的零點問題,考查分析問題和解決問題的能力,屬于中等題.19、(1)的普通方程為,的直角坐標方程為;(2).【解析】
(1)在曲線的參數(shù)方程中消去參數(shù)可得出曲線的普通方程,利用兩角和的正弦公式以及可將直線的極坐標方程化為普通方程;(2)設直線的參數(shù)方程為(為參數(shù)),并設點、所對應的參數(shù)分別為、,利用韋達定理可求得的值.【詳解】(1)由,得,,曲線的普通方程為,由,得,直線的直角坐標方程為;(2)設直線的參數(shù)方程為(為參數(shù)),代入,得,則,設、兩點對應參數(shù)分別為、,,,,,.【點睛】本題考查了參數(shù)方程、極坐標方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線參數(shù)方程幾何意義的應用,考查計算能力,屬于中等題.20、(1),有97.5%的把握認為是否同意父母生“二孩”與“性別”有關;(2)詳見解析.【解析】
(1)根據(jù)表格及同意父母生“二孩”占60%可求出,,根據(jù)公式計算結果即可確定有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)由題意可知X服從二項分布,利用公式計算概率及期望即可.【詳解】(1)因為100人中同意父母生“二孩”占60%,所以,文(2)由列聯(lián)表可得而所以有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)①由題知持“同意”態(tài)度的學生的頻率為,即從學生中任意抽取到一名持“同意”態(tài)度的學生的概率為.由于總體容量很大,故X服從二項分布,即從而X的分布列為X01234X的數(shù)學期望為【點睛】本題主要考查了相關性檢驗、二項分布,屬于中檔題.21、(1);(2)證明見解析.【解析】
(1)根據(jù)橢圓的基本性質(zhì)列出方程組,即可得出橢圓方程;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 供電指揮練習試題及答案
- 護理年終考試復習試題
- 行政組織結構優(yōu)化策略試題及答案
- 網(wǎng)絡建設的經(jīng)濟效益試題及答案
- 在線廣告投放平臺運營合作合同
- 醫(yī)學遺傳學遺傳病試題
- 國際技術交流與合作合同
- 嵌入式程序測試策略試題及答案
- 網(wǎng)絡架構的高可用性設計試題及答案
- 嵌入式軟件生命周期管理試題及答案
- 糧食倉儲監(jiān)管管理制度
- 甄嬛傳完整分
- 非常規(guī)油氣藏地質(zhì)特征研究
- 高端礦泉水項目融資計劃書
- 課程設計列車變頻空挪用直流電源系統(tǒng)的設計
- 頸椎間盤突出護理查房
- JCT903-2012 吸聲板用粒狀棉
- 鐵藝欄桿檢驗批
- 人教版三年級下冊數(shù)學全冊計算題專項訓練(含答案)
- 內(nèi)鏡進修匯報
- 抖音短視頻帳號策劃運營表
評論
0/150
提交評論