![2025屆江西南康市南康中學高三第二次模擬考試數學試卷含解析_第1頁](http://file4.renrendoc.com/view12/M01/06/36/wKhkGWdhwpuAJ_6fAAKqIRR1dzA466.jpg)
![2025屆江西南康市南康中學高三第二次模擬考試數學試卷含解析_第2頁](http://file4.renrendoc.com/view12/M01/06/36/wKhkGWdhwpuAJ_6fAAKqIRR1dzA4662.jpg)
![2025屆江西南康市南康中學高三第二次模擬考試數學試卷含解析_第3頁](http://file4.renrendoc.com/view12/M01/06/36/wKhkGWdhwpuAJ_6fAAKqIRR1dzA4663.jpg)
![2025屆江西南康市南康中學高三第二次模擬考試數學試卷含解析_第4頁](http://file4.renrendoc.com/view12/M01/06/36/wKhkGWdhwpuAJ_6fAAKqIRR1dzA4664.jpg)
![2025屆江西南康市南康中學高三第二次模擬考試數學試卷含解析_第5頁](http://file4.renrendoc.com/view12/M01/06/36/wKhkGWdhwpuAJ_6fAAKqIRR1dzA4665.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江西南康市南康中學高三第二次模擬考試數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.32.若復數()是純虛數,則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.定義在上函數滿足,且對任意的不相等的實數有成立,若關于x的不等式在上恒成立,則實數m的取值范圍是()A. B. C. D.4.已知函數,則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱5.已知函數,若函數的極大值點從小到大依次記為,并記相應的極大值為,則的值為()A. B. C. D.6.新聞出版業(yè)不斷推進供給側結構性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質出口產品供給,實現了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數字出版業(yè)營收增長情況,則下列說法錯誤的是()A.2012年至2016年我國新聞出版業(yè)和數字出版業(yè)營收均逐年增加B.2016年我國數字出版業(yè)營收超過2012年我國數字出版業(yè)營收的2倍C.2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍D.2016年我國數字出版營收占新聞出版營收的比例未超過三分之一7.已知三棱錐P﹣ABC的頂點都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.8.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.9.數列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.410.黨的十九大報告明確提出:在共享經濟等領域培育增長點、形成新動能.共享經濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經濟現象.為考察共享經濟對企業(yè)經濟活躍度的影響,在四個不同的企業(yè)各取兩個部門進行共享經濟對比試驗,根據四個企業(yè)得到的試驗數據畫出如下四個等高條形圖,最能體現共享經濟對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.11.已知三棱柱()A. B. C. D.12.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知多項式滿足,則_________,__________.14.某城市為了解該市甲、乙兩個旅游景點的游客數量情況,隨機抽取了這兩個景點20天的游客人數,得到如下莖葉圖:由此可估計,全年(按360天計算)中,游客人數在內時,甲景點比乙景點多______天.15.設f(x)=etx(t>0),過點P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C過點Q的切線交x軸于點R,若S(1,f(1)),則△PRS的面積的最小值是_____.16.割圓術是估算圓周率的科學方法,由三國時期數學家劉徽創(chuàng)立,他用圓內接正多邊形面積無限逼近圓面積,從而得出圓周率.現在半徑為1的圓內任取一點,則該點取自其內接正十二邊形內部的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)當時,判斷是否是函數的極值點,并說明理由;(2)當時,不等式恒成立,求整數的最小值.18.(12分)2019年安慶市在大力推進城市環(huán)境、人文精神建設的過程中,居民生活垃圾分類逐漸形成意識.有關部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識"的網絡問卷調查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調查中的1000人的得分數據,其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認為,此次問卷調查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數據用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關部門為此次參加問卷調查的市民制定如下獎勵方案:(i)得分不低于可獲贈2次隨機話費,得分低于則只有1次:(ii)每次贈送的隨機話費和對應概率如下:贈送話費(單位:元)1020概率現有一位市民要參加此次問卷調查,記X(單位:元)為該市民參加問卷調查獲贈的話費,求X的分布列.附:,若,則,.19.(12分)已知函數(1)若函數有且只有一個零點,求實數的取值范圍;(2)若函數對恒成立,求實數的取值范圍.20.(12分)本小題滿分14分)已知曲線的極坐標方程為,以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數方程為(為參數),求直線被曲線截得的線段的長度21.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.22.(10分)某芯片公司對今年新開發(fā)的一批5G手機芯片進行測評,該公司隨機調查了100顆芯片,并將所得統(tǒng)計數據分為五個小組(所調查的芯片得分均在內),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分數的平均數(同一組中的每個數據可用該組區(qū)間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標準與手機公司對芯片的評分方法及標準都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續(xù)測試,現手機公司測試部門預算的測試經費為10萬元,試問預算經費是否足夠測試完這100顆芯片?請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
將圓的方程化簡成標準方程,再根據垂徑定理求解即可.【詳解】圓的標準方程,圓心坐標為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據垂徑定理求解直線中參數的方法,屬于基礎題.2、B【解析】
化簡復數,由它是純虛數,求得,從而確定對應的點的坐標.【詳解】是純虛數,則,,,對應點為,在第二象限.故選:B.【點睛】本題考查復數的除法運算,考查復數的概念與幾何意義.本題屬于基礎題.3、B【解析】
結合題意可知是偶函數,且在單調遞減,化簡題目所給式子,建立不等式,結合導函數與原函數的單調性關系,構造新函數,計算最值,即可.【詳解】結合題意可知為偶函數,且在單調遞減,故可以轉換為對應于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數的基本性質和導函數與原函數單調性關系,計算范圍,可以轉化為函數,結合導函數,計算最值,即可得出答案.4、D【解析】
先將函數化為,再由三角函數的性質,逐項判斷,即可得出結果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數對稱軸可得:解得:,當,,故C正確;對于D,正弦函數對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數的性質,熟記三角函數基本公式和基本性質,考查了分析能力和計算能力,屬于基礎題.5、C【解析】
對此分段函數的第一部分進行求導分析可知,當時有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應極大值,分組求和即得【詳解】當時,,顯然當時有,,∴經單調性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數不能在端點處取得極值∴,,∴對應極值,,∴故選:C【點睛】本題考查基本函數極值的求解,從函數表達式中抽離出相應的等差數列和等比數列,最后分組求和,要求學生對數列和函數的熟悉程度高,為中檔題6、C【解析】
通過圖表所給數據,逐個選項驗證.【詳解】根據圖示數據可知選項A正確;對于選項B:,正確;對于選項C:,故C不正確;對于選項D:,正確.選C.【點睛】本題主要考查柱狀圖是識別和數據分析,題目較為簡單.7、D【解析】
由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設AB的中點為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點睛】本題考查多面體外接球表面積的求法,考查數形結合的解題思想方法,考查思維能力與計算能力,屬于中檔題.8、D【解析】解:根據幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結合圖中數據,計算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點睛:根據幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結合圖中數據計算它的體積即可.9、D【解析】
用去換中的n,得,相加即可找到數列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數列是以6為周期的周期數列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.10、D【解析】根據四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經濟活躍度的差異最大,它最能體現共享經濟對該部門的發(fā)展有顯著效果,故選D.11、C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側面BCC1B1內,矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=12、C【解析】
設線段的中點為,判斷出點的位置,結合雙曲線的定義,求得雙曲線的離心率.【詳解】設線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關系,考查數形結合的數學思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵多項式滿足∴令,得,則∴∴該多項式的一次項系數為∴∴∴令,得故答案為5,7214、72【解析】
根據給定的莖葉圖,得到游客人數在內時,甲景點共有7天,乙景點共有3天,進而求得全年中,甲景點比乙景點多的天數,得到答案.【詳解】由題意,根據給定的莖葉圖可得,在隨機抽取了這兩個景點20天的游客人數中,游客人數在內時,甲景點共有7天,乙景點共有3天,所以在全年)中,游客人數在內時,甲景點比乙景點多天.故答案為:.【點睛】本題主要考查了莖葉圖的應用,其中解答中熟記莖葉圖的基本知識,合理推算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、【解析】
計算R(t,0),PR=t﹣(t),△PRS的面積為S,導數S′,由S′=0得t=1,根據函數的單調性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導數f′(x)=tetx,∴過Q的切線斜率k=t,設R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導數S′,由S′=0得t=1,當t>1時,S′>0,當0<t<1時,S′<0,∴t=1為極小值點,也為最小值點,∴△PRS的面積的最小值為.故答案為:.【點睛】本題考查了利用導數求面積的最值問題,意在考查學生的計算能力和應用能力.16、【解析】
求出圓內接正十二邊形的面積和圓的面積,再用幾何概型公式求出即可.【詳解】半徑為1的圓內接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,∴該正十二邊形的面積為,根據幾何概型公式,該點取自其內接正十二邊形的概率為,故答案為:.【點睛】本小題主要考查面積型幾何概型的計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)是函數的極大值點,理由詳見解析;(2)1.【解析】
(1)將直接代入,對求導得,由于函數單調性不好判斷,故而構造函數,繼續(xù)求導,判斷導函數在左右兩邊的正負情況,最后得出,是函數的極大值點;(2)利用題目已有條件得,再證明時,不等式恒成立,即證,從而可知整數的最小值為1.【詳解】解:(1)當時,.令,則當時,.即在內為減函數,且∴當時,;當時,.∴在內是增函數,在內是減函數.綜上,是函數的極大值點.(2)由題意,得,即.現證明當時,不等式成立,即.即證令則∴當時,;當時,.∴在內單調遞增,在內單調遞減,的最大值為.∴當時,.即當時,不等式成立.綜上,整數的最小值為.【點睛】本題考查學生利用導數處理函數的極值,最值,判斷函數的單調性,由此來求解函數中的參數的取值范圍,對學生要求較高,然后需要學生能構造新函數處理恒成立問題,為難題18、(1)(2)詳見解析【解析】
(1)利用頻率分布直方圖平均數等于小矩形的面積乘以底邊中點橫坐標之和,再利用正態(tài)分布的對稱性進行求解.(2)寫出隨機變量的所有可能取值,利用互斥事件和相互獨立事件同時發(fā)生的概率計算公式,再列表得到其分布列.【詳解】解:(1)從這1000人問卷調查得到的平均值為∵由于得分Z服從正態(tài)分布,(2)設得分不低于分的概率為p,(或由頻率分布直方圖知)法一:X的取值為10,20,30,40;;;;所以X的分布列為X10203040P法二:2次隨機贈送的話費及對應概率如下2次話費總和203040PX的取值為10,20,30,40;;;;所以X的分布列為X10203040P【點睛】本題考查了正態(tài)分布、離散型隨機變量的分布列,屬于基礎題.19、(1);(2).【解析】
(1)求導得到,討論和兩種情況,計算函數的單調性,得到,再討論,,三種情況,計算得到答案.(2)計算得到,討論,兩種情況,分別計算單調性得到函數最值,得到答案.【詳解】(1),①當時恒成立,所以單調遞增,因為,所以有唯一零點,即符合題意;②當時,令,函數在上單調遞減,在上單調遞增,函數。(i)當即,所以符合題意,(ii)當即時,因為,故存在,所以不符題意(iii)當時,因為,設,所以,單調遞增,即,故存在,使得,不符題意;綜上,的取值范圍為。(2)。①當時,恒成立,所以單調遞增,所以,即符合題意;②當時,恒成立,所以單調遞增,又因為,所以存在,使得,且當時,。即在上單調遞減,所以,不符題意。綜上,的取值范圍為.【點睛】本題考查了函數的零點問題,恒成立問題,意在考查學生的分類討論能力和綜合應用能力.20、【解析】解:解:將曲線的極坐標方程化為直角坐標方程為,即,它表示以為圓心,2為半徑圓,………4分直線方程的普通方程為,………8分圓C的圓心到直線l
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《室性早搏導管消融》課件
- 會博通10單用戶版用戶操作指引
- 《動物防疫法》考試題庫100題(含答案)
- 蜂窩微納孔、量子單層石墨烯面料技改項目可行性研究報告寫作模板-申批備案
- 2025年河北女子職業(yè)技術學院高職單招職業(yè)適應性測試近5年常考版參考題庫含答案解析
- 專題06 發(fā)展與合作-(解析版)
- 2025年昭通衛(wèi)生職業(yè)學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 《醫(yī)療器械法規(guī)培訓》課件
- 2025年春節(jié)消費機遇和備貨建議報告
- 中班區(qū)域活動計劃實施方案五篇
- 安全生產網格員培訓
- 小學數學分數四則混合運算300題帶答案
- 2024年交管12123學法減分考試題庫和答案
- 臨床下肢深靜脈血栓的預防和護理新進展
- 動物生產與流通環(huán)節(jié)檢疫(動物防疫檢疫課件)
- 2024年山東泰安市泰山財金投資集團有限公司招聘筆試參考題庫含答案解析
- 英語主語從句省公開課一等獎全國示范課微課金獎課件
- C139客戶開發(fā)管理模型
- 年度工作總結與計劃會議
- 醫(yī)保按病種分值付費(DIP)院內培訓
- 近五年重慶中考物理試題及答案2023
評論
0/150
提交評論