吉林建筑科技學(xué)院《中外經(jīng)典紋樣與圖形》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
吉林建筑科技學(xué)院《中外經(jīng)典紋樣與圖形》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
吉林建筑科技學(xué)院《中外經(jīng)典紋樣與圖形》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
吉林建筑科技學(xué)院《中外經(jīng)典紋樣與圖形》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
吉林建筑科技學(xué)院《中外經(jīng)典紋樣與圖形》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)吉林建筑科技學(xué)院

《中外經(jīng)典紋樣與圖形》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)要構(gòu)建一個(gè)能夠?qū)?shū)畫(huà)作品進(jìn)行真?zhèn)舞b定的計(jì)算機(jī)視覺(jué)系統(tǒng),需要對(duì)作品的筆觸、線條和風(fēng)格等特征進(jìn)行分析。以下哪種技術(shù)在書(shū)畫(huà)鑒定中可能具有應(yīng)用前景?()A.筆跡分析B.風(fēng)格遷移C.圖像風(fēng)格分析D.以上都是2、計(jì)算機(jī)視覺(jué)在醫(yī)學(xué)圖像分析中有著重要作用。假設(shè)要通過(guò)眼底圖像檢測(cè)糖尿病性視網(wǎng)膜病變,以下關(guān)于模型訓(xùn)練中數(shù)據(jù)標(biāo)注的難度,哪一項(xiàng)是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標(biāo)注B.眼底圖像的質(zhì)量參差不齊,影響標(biāo)注準(zhǔn)確性C.標(biāo)注人員的醫(yī)學(xué)知識(shí)不足,導(dǎo)致標(biāo)注錯(cuò)誤D.數(shù)據(jù)量過(guò)大,標(biāo)注工作耗時(shí)費(fèi)力3、計(jì)算機(jī)視覺(jué)中的目標(biāo)重識(shí)別任務(wù)旨在在不同的攝像頭視角中識(shí)別出同一目標(biāo)。假設(shè)要在一個(gè)大型商場(chǎng)的多個(gè)攝像頭中尋找一個(gè)特定的人物。以下關(guān)于目標(biāo)重識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)提取目標(biāo)的特征,如顏色、形狀和紋理,來(lái)進(jìn)行重識(shí)別B.深度學(xué)習(xí)中的特征學(xué)習(xí)方法能夠提高目標(biāo)重識(shí)別的準(zhǔn)確率C.目標(biāo)重識(shí)別不受攝像頭視角、光照和人物姿態(tài)變化的影響D.可以通過(guò)建立目標(biāo)的特征庫(kù),快速在多個(gè)攝像頭中進(jìn)行匹配和搜索4、當(dāng)利用計(jì)算機(jī)視覺(jué)進(jìn)行圖像分類(lèi)任務(wù),例如區(qū)分不同種類(lèi)的動(dòng)物圖片,為了提高模型的泛化能力和防止過(guò)擬合,以下哪種技術(shù)可能是有效的?()A.數(shù)據(jù)增強(qiáng)B.正則化C.模型融合D.以上都是5、計(jì)算機(jī)視覺(jué)在自動(dòng)駕駛領(lǐng)域有廣泛的應(yīng)用。假設(shè)一輛自動(dòng)駕駛汽車(chē)需要識(shí)別道路上的交通標(biāo)志,以下關(guān)于自動(dòng)駕駛中的計(jì)算機(jī)視覺(jué)應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.多攝像頭融合可以提供更全面的道路信息,提高交通標(biāo)志識(shí)別的準(zhǔn)確性B.深度學(xué)習(xí)模型可以實(shí)時(shí)處理攝像頭采集的圖像,快速準(zhǔn)確地識(shí)別交通標(biāo)志C.除了交通標(biāo)志識(shí)別,計(jì)算機(jī)視覺(jué)還可以用于車(chē)道檢測(cè)、行人檢測(cè)和障礙物檢測(cè)等任務(wù)D.自動(dòng)駕駛中的計(jì)算機(jī)視覺(jué)系統(tǒng)完全不需要其他傳感器(如雷達(dá)、激光雷達(dá))的輔助,僅依靠圖像信息就能實(shí)現(xiàn)安全可靠的駕駛6、圖像檢索是計(jì)算機(jī)視覺(jué)的一個(gè)重要應(yīng)用。假設(shè)我們要在一個(gè)大型圖像數(shù)據(jù)庫(kù)中快速找到與給定查詢(xún)圖像相似的圖像,以下哪種圖像表示方法可能對(duì)提高檢索效率有幫助?()A.全局特征表示B.局部特征表示C.基于深度學(xué)習(xí)的特征表示D.基于顏色直方圖的特征表示7、在計(jì)算機(jī)視覺(jué)的圖像檢索任務(wù)中,根據(jù)用戶(hù)的需求從圖像數(shù)據(jù)庫(kù)中查找相關(guān)圖像。假設(shè)要從一個(gè)大型的圖像庫(kù)中檢索包含特定物體的圖像,以下關(guān)于圖像檢索方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像的內(nèi)容特征,如顏色、形狀和紋理等,進(jìn)行相似性度量和檢索B.深度學(xué)習(xí)模型能夠提取更具語(yǔ)義和判別力的特征,提高圖像檢索的準(zhǔn)確性C.圖像檢索的結(jié)果只取決于圖像的特征表示,與檢索算法的效率無(wú)關(guān)D.可以結(jié)合用戶(hù)的反饋和交互,不斷優(yōu)化圖像檢索的結(jié)果8、假設(shè)我們要開(kāi)發(fā)一個(gè)計(jì)算機(jī)視覺(jué)系統(tǒng),用于檢測(cè)生產(chǎn)線上產(chǎn)品的表面缺陷。由于產(chǎn)品的種類(lèi)繁多、缺陷類(lèi)型復(fù)雜,以下哪種方法可能需要更多的計(jì)算資源和時(shí)間來(lái)訓(xùn)練模型?()A.基于傳統(tǒng)機(jī)器學(xué)習(xí)的方法B.基于淺層神經(jīng)網(wǎng)絡(luò)的方法C.基于深度學(xué)習(xí)的方法D.基于模板匹配的方法9、在計(jì)算機(jī)視覺(jué)的人臉識(shí)別任務(wù)中,假設(shè)要實(shí)現(xiàn)一個(gè)能夠在不同光照和表情下準(zhǔn)確識(shí)別的系統(tǒng)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最重要的?()A.對(duì)人臉圖像進(jìn)行歸一化處理,統(tǒng)一大小和亮度B.對(duì)圖像進(jìn)行銳化處理,增強(qiáng)面部特征C.給圖像添加藝術(shù)效果,提高美觀度D.隨機(jī)裁剪圖像,增加數(shù)據(jù)多樣性10、在計(jì)算機(jī)視覺(jué)的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時(shí)保持圖像的細(xì)節(jié)和紋理。以下哪種深度學(xué)習(xí)架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對(duì)抗網(wǎng)絡(luò)(GAN)D.自動(dòng)編碼器(Autoencoder)11、在一個(gè)基于計(jì)算機(jī)視覺(jué)的機(jī)器人導(dǎo)航系統(tǒng)中,需要根據(jù)環(huán)境圖像來(lái)規(guī)劃?rùn)C(jī)器人的路徑。以下哪種視覺(jué)導(dǎo)航方法可能更適合復(fù)雜動(dòng)態(tài)環(huán)境?()A.基于地圖的導(dǎo)航B.基于視覺(jué)里程計(jì)的導(dǎo)航C.基于深度學(xué)習(xí)的端到端導(dǎo)航D.以上都是12、在計(jì)算機(jī)視覺(jué)的目標(biāo)識(shí)別任務(wù)中,除了識(shí)別目標(biāo)的類(lèi)別,還需要確定目標(biāo)的位置和大小。假設(shè)我們要在一幅復(fù)雜的圖像中識(shí)別多個(gè)不同大小的物體,以下哪種目標(biāo)識(shí)別算法能夠適應(yīng)不同尺度的目標(biāo)?()A.基于滑動(dòng)窗口的目標(biāo)識(shí)別算法B.基于特征金字塔的目標(biāo)識(shí)別算法C.基于注意力機(jī)制的目標(biāo)識(shí)別算法D.基于模板匹配的目標(biāo)識(shí)別算法13、計(jì)算機(jī)視覺(jué)中的人臉識(shí)別技術(shù)應(yīng)用廣泛。假設(shè)要在一個(gè)門(mén)禁系統(tǒng)中實(shí)現(xiàn)準(zhǔn)確的人臉識(shí)別,以下關(guān)于人臉識(shí)別方法的描述,正確的是:()A.基于幾何特征的人臉識(shí)別方法對(duì)姿態(tài)和光照變化具有很強(qiáng)的魯棒性B.基于模板匹配的方法能夠處理大規(guī)模的人臉數(shù)據(jù)庫(kù),并且識(shí)別速度快C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在人臉識(shí)別中能夠?qū)W習(xí)到更具判別性的特征,但容易受到數(shù)據(jù)偏差的影響D.人臉識(shí)別系統(tǒng)一旦訓(xùn)練完成,就不需要更新和優(yōu)化,能夠一直保持高準(zhǔn)確率14、當(dāng)利用計(jì)算機(jī)視覺(jué)技術(shù)對(duì)醫(yī)學(xué)影像(如X光、CT等)進(jìn)行分析,輔助醫(yī)生進(jìn)行疾病診斷時(shí),需要從大量的圖像數(shù)據(jù)中提取有價(jià)值的特征。以下哪種特征提取方法在醫(yī)學(xué)影像分析中可能具有較高的應(yīng)用價(jià)值?()A.基于形狀的特征提取B.基于紋理的特征提取C.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)D.基于顏色的特征提取15、對(duì)于圖像的超分辨率重建任務(wù),假設(shè)要將一張低分辨率的圖像恢復(fù)為高分辨率圖像,同時(shí)保留圖像的細(xì)節(jié)和清晰度。這張低分辨率圖像可能存在模糊和失真。以下哪種方法在處理這種情況時(shí)可能表現(xiàn)更好?()A.基于插值的方法,如雙線性插值和雙三次插值B.基于深度學(xué)習(xí)的超分辨率重建模型,如SRCNNC.對(duì)低分辨率圖像進(jìn)行簡(jiǎn)單的銳化處理D.不進(jìn)行任何處理,直接使用低分辨率圖像16、計(jì)算機(jī)視覺(jué)中的場(chǎng)景理解需要從圖像中推斷出物體之間的關(guān)系和場(chǎng)景的語(yǔ)義信息。假設(shè)要理解一張室內(nèi)辦公室場(chǎng)景的圖像,包括家具的布局、人員的活動(dòng)等。以下哪種方法在進(jìn)行場(chǎng)景理解時(shí)最為有效?()A.基于對(duì)象檢測(cè)和分類(lèi)的方法B.基于圖模型的場(chǎng)景表示C.基于深度學(xué)習(xí)的場(chǎng)景解析D.基于規(guī)則推理的方法17、在計(jì)算機(jī)視覺(jué)的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對(duì)于準(zhǔn)確理解場(chǎng)景是至關(guān)重要的?()A.物體的類(lèi)別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機(jī)選擇圖像中的部分區(qū)域進(jìn)行分析18、計(jì)算機(jī)視覺(jué)在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中的應(yīng)用可以提供更沉浸式的體驗(yàn)。假設(shè)要在VR環(huán)境中實(shí)時(shí)跟蹤用戶(hù)的頭部運(yùn)動(dòng)并相應(yīng)地更新場(chǎng)景,以下關(guān)于VR/AR計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.簡(jiǎn)單的基于傳感器的跟蹤方法能夠滿足VR中高精度的頭部運(yùn)動(dòng)跟蹤需求B.計(jì)算機(jī)視覺(jué)在VR/AR中的應(yīng)用主要關(guān)注圖像生成,而不是跟蹤和定位C.結(jié)合視覺(jué)特征提取和深度學(xué)習(xí)的頭部運(yùn)動(dòng)跟蹤算法可以實(shí)現(xiàn)低延遲和高精度的跟蹤D.VR/AR環(huán)境中的光照條件和物體遮擋對(duì)計(jì)算機(jī)視覺(jué)算法的性能沒(méi)有影響19、計(jì)算機(jī)視覺(jué)中的視覺(jué)注意力機(jī)制用于聚焦圖像中的重要區(qū)域。以下關(guān)于視覺(jué)注意力機(jī)制的說(shuō)法,不正確的是()A.視覺(jué)注意力機(jī)制可以根據(jù)圖像的特征和任務(wù)需求動(dòng)態(tài)地選擇關(guān)注的區(qū)域B.注意力機(jī)制能夠提高模型的效率和性能,減少對(duì)無(wú)關(guān)信息的處理C.視覺(jué)注意力機(jī)制在圖像分類(lèi)、目標(biāo)檢測(cè)和圖像生成等任務(wù)中得到了廣泛應(yīng)用D.視覺(jué)注意力機(jī)制的引入會(huì)增加模型的復(fù)雜度和計(jì)算量,降低模型的訓(xùn)練速度20、計(jì)算機(jī)視覺(jué)在文物保護(hù)和修復(fù)中的應(yīng)用逐漸增多。假設(shè)要對(duì)一幅古老的繪畫(huà)進(jìn)行數(shù)字化修復(fù)和增強(qiáng),以下關(guān)于顏色恢復(fù)的挑戰(zhàn),哪一項(xiàng)是最為顯著的?()A.由于年代久遠(yuǎn),原畫(huà)作的顏色信息缺失嚴(yán)重B.不同區(qū)域的顏色褪色程度不一致,難以統(tǒng)一恢復(fù)C.缺乏對(duì)原畫(huà)作創(chuàng)作時(shí)所用顏料的了解,難以準(zhǔn)確還原顏色D.修復(fù)過(guò)程中可能引入新的顏色偏差,影響修復(fù)效果21、在計(jì)算機(jī)視覺(jué)的目標(biāo)檢測(cè)中,對(duì)于小目標(biāo)的檢測(cè)往往具有較大的挑戰(zhàn)性。為了提高小目標(biāo)檢測(cè)的準(zhǔn)確率,以下哪種策略可能是有效的?()A.多尺度特征融合B.增加訓(xùn)練數(shù)據(jù)中的小目標(biāo)樣本C.使用更高分辨率的輸入圖像D.以上都是22、在計(jì)算機(jī)視覺(jué)的目標(biāo)計(jì)數(shù)任務(wù)中,統(tǒng)計(jì)圖像或視頻中目標(biāo)的數(shù)量。假設(shè)要統(tǒng)計(jì)一個(gè)果園中蘋(píng)果的數(shù)量,以下關(guān)于目標(biāo)計(jì)數(shù)方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像分割和對(duì)象識(shí)別的方法,先分割出每個(gè)蘋(píng)果,然后進(jìn)行計(jì)數(shù)B.利用深度學(xué)習(xí)中的回歸模型直接預(yù)測(cè)蘋(píng)果的數(shù)量C.目標(biāo)計(jì)數(shù)不受蘋(píng)果的大小、形狀和分布的影響,任何情況下都能準(zhǔn)確計(jì)數(shù)D.結(jié)合多視角圖像或視頻序列可以提高目標(biāo)計(jì)數(shù)的準(zhǔn)確性23、計(jì)算機(jī)視覺(jué)在文物保護(hù)和數(shù)字化中的應(yīng)用可以幫助記錄和分析文物信息。假設(shè)要對(duì)一件古老的雕塑進(jìn)行三維數(shù)字化和表面紋理分析,以下關(guān)于文物保護(hù)計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.傳統(tǒng)的攝影測(cè)量方法在文物數(shù)字化中比基于深度學(xué)習(xí)的方法更精確B.文物的復(fù)雜形狀和表面材質(zhì)對(duì)數(shù)字化和分析過(guò)程沒(méi)有挑戰(zhàn)C.結(jié)合多種成像技術(shù)和計(jì)算機(jī)視覺(jué)算法能夠更全面地獲取文物的信息D.文物保護(hù)中的計(jì)算機(jī)視覺(jué)應(yīng)用不需要考慮對(duì)文物的非接觸性和無(wú)損性要求24、在圖像分類(lèi)任務(wù)中,深度學(xué)習(xí)模型取得了顯著的成果。假設(shè)要對(duì)一組包含不同動(dòng)物的圖像進(jìn)行分類(lèi),以下關(guān)于圖像分類(lèi)模型的描述,正確的是:()A.模型的層數(shù)越多,分類(lèi)準(zhǔn)確率一定越高B.數(shù)據(jù)增強(qiáng)技術(shù),如旋轉(zhuǎn)、裁剪等,對(duì)模型的性能提升沒(méi)有幫助C.結(jié)合多種特征提取方法和分類(lèi)器,可以提高圖像分類(lèi)的準(zhǔn)確性和魯棒性D.圖像分類(lèi)模型不需要考慮圖像的空間信息,只關(guān)注像素值的統(tǒng)計(jì)特征25、計(jì)算機(jī)視覺(jué)中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)要估計(jì)一段視頻中物體的運(yùn)動(dòng)速度和方向,以下關(guān)于光流估計(jì)方法的描述,正確的是:()A.傳統(tǒng)的基于梯度的光流估計(jì)方法在復(fù)雜場(chǎng)景中能夠準(zhǔn)確計(jì)算光流B.深度學(xué)習(xí)中的光流估計(jì)網(wǎng)絡(luò)不需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練C.光流估計(jì)的結(jié)果不受圖像噪聲和模糊的影響D.結(jié)合時(shí)空信息的深度學(xué)習(xí)光流估計(jì)方法能夠提高估計(jì)的準(zhǔn)確性和魯棒性二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述圖像的飽和度調(diào)整方法。2、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的車(chē)牌識(shí)別技術(shù)。3、(本題5分)簡(jiǎn)述圖像分割的評(píng)價(jià)指標(biāo)。4、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的強(qiáng)化學(xué)習(xí)在機(jī)器人視覺(jué)中的應(yīng)用。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)以可口可樂(lè)的廣告為例,分析其色彩運(yùn)用、圖形設(shè)計(jì)和廣告語(yǔ)的創(chuàng)意。闡述這些元素如何共同傳達(dá)品牌價(jià)值觀,吸引消費(fèi)者并保持品牌的活力。2、(本題5分)分析亞馬遜的電子書(shū)閱讀器Kindle的界面設(shè)計(jì),從屏幕顯示、字體選擇到操作方式。討論其如何提升用戶(hù)的閱讀體驗(yàn)。3、(本題5分)探討某文具店的促銷(xiāo)海報(bào)設(shè)計(jì),研究其如何通過(guò)優(yōu)惠信息、產(chǎn)品推薦、色彩搭配等吸引

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論