版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)濟(jì)源職業(yè)技術(shù)學(xué)院
《智能優(yōu)化與信息處理綜合實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能在教育領(lǐng)域的應(yīng)用有望實(shí)現(xiàn)個(gè)性化學(xué)習(xí)和智能輔導(dǎo)。假設(shè)一個(gè)在線學(xué)習(xí)平臺(tái)使用人工智能為學(xué)生提供個(gè)性化課程推薦,以下關(guān)于教育領(lǐng)域人工智能應(yīng)用的描述,正確的是:()A.人工智能可以完全根據(jù)學(xué)生的學(xué)習(xí)成績(jī)來(lái)推薦課程,無(wú)需考慮其他因素B.學(xué)生的學(xué)習(xí)習(xí)慣、興趣和知識(shí)水平等因素都應(yīng)該被納入人工智能的課程推薦模型中C.人工智能在教育領(lǐng)域的應(yīng)用可能會(huì)導(dǎo)致學(xué)生過(guò)度依賴技術(shù),降低自主學(xué)習(xí)能力D.教育領(lǐng)域的人工智能應(yīng)用不需要考慮教育倫理和學(xué)生隱私保護(hù)問(wèn)題2、在人工智能的文本摘要生成中,假設(shè)需要從長(zhǎng)篇文章中提取關(guān)鍵信息并生成簡(jiǎn)潔準(zhǔn)確的摘要。以下哪種方法能夠更好地捕捉文章的主旨和重點(diǎn)?()A.基于注意力機(jī)制的模型,關(guān)注重要的文本部分B.按照文章的開(kāi)頭和結(jié)尾提取關(guān)鍵語(yǔ)句C.隨機(jī)選擇文章中的段落作為摘要D.不進(jìn)行任何分析,直接輸出原文的前幾段3、在人工智能的研究中,遷移學(xué)習(xí)是一種有效的技術(shù)。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于醫(yī)學(xué)圖像分析,以下關(guān)于遷移學(xué)習(xí)的描述,正確的是:()A.可以直接將原模型應(yīng)用于新的醫(yī)學(xué)圖像任務(wù),無(wú)需任何調(diào)整B.由于數(shù)據(jù)領(lǐng)域差異較大,遷移學(xué)習(xí)在這種情況下不可能有效C.對(duì)原模型進(jìn)行適當(dāng)?shù)奈⒄{(diào),并利用少量的醫(yī)學(xué)圖像數(shù)據(jù)進(jìn)行再訓(xùn)練,可以提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只能應(yīng)用于相似的數(shù)據(jù)類型和任務(wù),不能跨越不同領(lǐng)域4、在人工智能的決策樹(shù)算法中,當(dāng)進(jìn)行特征選擇來(lái)構(gòu)建決策樹(shù)時(shí),以下哪種特征選擇標(biāo)準(zhǔn)通常能夠產(chǎn)生更優(yōu)的決策樹(shù)?()A.信息增益B.基尼系數(shù)C.隨機(jī)選擇特征D.選擇特征數(shù)量最多的特征5、人工智能中的智能代理能夠自主地感知環(huán)境、做出決策并執(zhí)行動(dòng)作。假設(shè)一個(gè)智能代理在游戲中與其他玩家交互。以下關(guān)于智能代理的描述,哪一項(xiàng)是錯(cuò)誤的?()A.智能代理可以通過(guò)學(xué)習(xí)和經(jīng)驗(yàn)積累來(lái)改進(jìn)自己的策略B.它能夠根據(jù)環(huán)境的變化實(shí)時(shí)調(diào)整自己的行為,以達(dá)到目標(biāo)C.智能代理的決策完全基于預(yù)設(shè)的規(guī)則,無(wú)法從環(huán)境中學(xué)習(xí)和適應(yīng)D.多個(gè)智能代理之間可以通過(guò)協(xié)作或競(jìng)爭(zhēng)來(lái)實(shí)現(xiàn)更復(fù)雜的任務(wù)6、人工智能中的知識(shí)表示和推理是實(shí)現(xiàn)智能系統(tǒng)的基礎(chǔ)。假設(shè)要構(gòu)建一個(gè)醫(yī)療診斷專家系統(tǒng),能夠根據(jù)患者的癥狀、檢查結(jié)果等信息進(jìn)行推理和診斷。以下哪種知識(shí)表示方法最適合用于表示復(fù)雜的醫(yī)學(xué)知識(shí)和推理規(guī)則,并且便于系統(tǒng)的更新和維護(hù)?()A.產(chǎn)生式規(guī)則B.語(yǔ)義網(wǎng)絡(luò)C.框架表示D.一階謂詞邏輯7、人工智能在金融欺詐檢測(cè)中的應(yīng)用能夠提高防范能力。假設(shè)一個(gè)金融機(jī)構(gòu)要利用人工智能檢測(cè)欺詐行為,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.分析交易數(shù)據(jù)中的異常模式和行為特征,識(shí)別潛在的欺詐B.實(shí)時(shí)監(jiān)測(cè)和預(yù)警,及時(shí)采取措施阻止欺詐交易C.人工智能可以完全杜絕金融欺詐的發(fā)生,無(wú)需其他防范手段D.結(jié)合規(guī)則引擎和機(jī)器學(xué)習(xí)算法,提高檢測(cè)的準(zhǔn)確性和適應(yīng)性8、在人工智能的目標(biāo)檢測(cè)任務(wù)中,假設(shè)要在圖像中準(zhǔn)確檢測(cè)出多個(gè)不同類別的物體,以下關(guān)于目標(biāo)檢測(cè)算法的描述,正確的是:()A.基于傳統(tǒng)特征的目標(biāo)檢測(cè)算法在復(fù)雜場(chǎng)景下的性能優(yōu)于深度學(xué)習(xí)算法B.深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,如FasterR-CNN,能夠?qū)崿F(xiàn)高精度的檢測(cè)C.目標(biāo)檢測(cè)算法的性能只取決于模型的復(fù)雜度,與訓(xùn)練數(shù)據(jù)無(wú)關(guān)D.所有的目標(biāo)檢測(cè)算法都能夠?qū)崟r(shí)處理視頻中的目標(biāo)檢測(cè)任務(wù)9、在人工智能的知識(shí)圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)。假設(shè)要為一個(gè)特定領(lǐng)域構(gòu)建知識(shí)圖譜,以下關(guān)于數(shù)據(jù)來(lái)源的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.只選擇權(quán)威的學(xué)術(shù)文獻(xiàn)和研究報(bào)告,確保知識(shí)的準(zhǔn)確性B.廣泛收集互聯(lián)網(wǎng)上的各種信息,包括社交媒體和博客等C.結(jié)合行業(yè)專家的經(jīng)驗(yàn)和知識(shí),以及相關(guān)的數(shù)據(jù)庫(kù)和文檔D.隨機(jī)選擇一些數(shù)據(jù)來(lái)源,不進(jìn)行篩選和評(píng)估10、在人工智能的圖像超分辨率重建任務(wù)中,例如將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種技術(shù)和網(wǎng)絡(luò)結(jié)構(gòu)可能會(huì)發(fā)揮重要作用?()A.殘差網(wǎng)絡(luò)B.注意力機(jī)制C.對(duì)抗生成網(wǎng)絡(luò)D.以上都是11、人工智能中的機(jī)器翻譯是一項(xiàng)具有挑戰(zhàn)性的任務(wù)。假設(shè)我們要將一段中文文本翻譯成英文,以下關(guān)于機(jī)器翻譯的挑戰(zhàn),哪一項(xiàng)是不正確的?()A.詞匯的多義性B.語(yǔ)法結(jié)構(gòu)的差異C.文化背景的不同D.機(jī)器翻譯的質(zhì)量已經(jīng)超越了人類翻譯12、在人工智能的教育應(yīng)用中,個(gè)性化學(xué)習(xí)系統(tǒng)可以根據(jù)學(xué)生的學(xué)習(xí)情況提供定制的學(xué)習(xí)內(nèi)容和建議。假設(shè)要開(kāi)發(fā)一個(gè)這樣的系統(tǒng),需要準(zhǔn)確評(píng)估學(xué)生的知識(shí)水平和學(xué)習(xí)能力。以下哪種評(píng)估方法和模型在實(shí)現(xiàn)個(gè)性化學(xué)習(xí)方面最為準(zhǔn)確和有效?()A.基于標(biāo)準(zhǔn)化測(cè)試的評(píng)估B.基于學(xué)習(xí)行為數(shù)據(jù)的動(dòng)態(tài)評(píng)估C.教師的主觀評(píng)價(jià)D.同學(xué)之間的相互評(píng)價(jià)13、在人工智能的模型評(píng)估中,需要選擇合適的指標(biāo)來(lái)衡量模型的性能。假設(shè)一個(gè)圖像分類模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,正確的是:()A.準(zhǔn)確率是唯一重要的評(píng)估指標(biāo),其他指標(biāo)如召回率和F1值都不重要B.對(duì)于不平衡的數(shù)據(jù)集,準(zhǔn)確率可能會(huì)產(chǎn)生誤導(dǎo),應(yīng)該使用更合適的指標(biāo)如召回率和F1值C.模型評(píng)估指標(biāo)只與模型的架構(gòu)有關(guān),與數(shù)據(jù)分布無(wú)關(guān)D.選擇評(píng)估指標(biāo)時(shí)不需要考慮具體的應(yīng)用場(chǎng)景和需求14、在人工智能的應(yīng)用中,自動(dòng)駕駛是一個(gè)具有挑戰(zhàn)性的領(lǐng)域。假設(shè)一輛自動(dòng)駕駛汽車需要在復(fù)雜的交通環(huán)境中做出安全的駕駛決策,需要融合多種傳感器的數(shù)據(jù)。以下關(guān)于傳感器融合的方法,哪一項(xiàng)是不正確的?()A.使用卡爾曼濾波將不同傳感器的數(shù)據(jù)進(jìn)行融合,以獲得更準(zhǔn)確的車輛狀態(tài)估計(jì)B.簡(jiǎn)單地將各個(gè)傳感器的數(shù)據(jù)相加,作為最終的決策依據(jù)C.基于深度學(xué)習(xí)的方法,自動(dòng)學(xué)習(xí)不同傳感器數(shù)據(jù)之間的關(guān)系D.采用加權(quán)平均的方式,根據(jù)傳感器的可靠性為其分配不同的權(quán)重15、在機(jī)器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí)是兩種主要的學(xué)習(xí)方式??紤]一個(gè)場(chǎng)景,我們有大量未標(biāo)記的圖像數(shù)據(jù),希望從中發(fā)現(xiàn)一些潛在的模式和結(jié)構(gòu)。以下哪種機(jī)器學(xué)習(xí)方法更適合這種情況?()A.線性回歸B.決策樹(shù)C.聚類分析D.邏輯回歸16、在人工智能的發(fā)展過(guò)程中,算力的提升起到了重要的推動(dòng)作用。假設(shè)一個(gè)研究團(tuán)隊(duì)需要進(jìn)行大規(guī)模的人工智能模型訓(xùn)練。以下關(guān)于算力對(duì)人工智能的影響的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)大的算力能夠加速模型的訓(xùn)練過(guò)程,縮短研發(fā)周期B.更高的算力可以支持更復(fù)雜的模型結(jié)構(gòu)和更多的數(shù)據(jù)處理C.只要有足夠的算力,就可以忽略模型的優(yōu)化和算法的改進(jìn)D.算力的成本和可獲取性會(huì)影響人工智能技術(shù)的應(yīng)用和推廣17、生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種熱門(mén)的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN由一個(gè)生成器和一個(gè)判別器組成,它們相互競(jìng)爭(zhēng),共同提高生成效果B.生成器的目標(biāo)是盡量使生成的圖像與真實(shí)圖像差異增大,以迷惑判別器C.判別器的能力越強(qiáng),生成器生成的圖像質(zhì)量就越差D.GAN只能用于圖像生成,不能應(yīng)用于其他領(lǐng)域,如音頻生成18、人工智能中的自動(dòng)機(jī)器學(xué)習(xí)(AutoML)旨在自動(dòng)化模型的選擇和調(diào)優(yōu)過(guò)程。假設(shè)一個(gè)企業(yè)沒(méi)有專業(yè)的數(shù)據(jù)科學(xué)家,希望使用AutoML來(lái)構(gòu)建模型。以下關(guān)于自動(dòng)機(jī)器學(xué)習(xí)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.AutoML可以自動(dòng)搜索合適的算法、超參數(shù)和特征工程方法B.能夠降低模型開(kāi)發(fā)的門(mén)檻,使非專業(yè)人員也能構(gòu)建有效的人工智能模型C.AutoML生成的模型總是優(yōu)于由經(jīng)驗(yàn)豐富的數(shù)據(jù)科學(xué)家手動(dòng)構(gòu)建的模型D.但仍需要一定的人工干預(yù)和監(jiān)督,以確保模型的合理性和可靠性19、生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種新興的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像。以下關(guān)于生成對(duì)抗網(wǎng)絡(luò)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,兩者通過(guò)對(duì)抗訓(xùn)練不斷優(yōu)化B.生成器負(fù)責(zé)生成假樣本,判別器負(fù)責(zé)判斷樣本的真假C.GAN可以生成具有高度創(chuàng)造性和多樣性的新數(shù)據(jù)D.GAN的訓(xùn)練過(guò)程非常穩(wěn)定,不會(huì)出現(xiàn)模式崩潰等問(wèn)題20、在人工智能的圖像生成任務(wù)中,變分自編碼器(VAE)是一種常用的模型。假設(shè)要使用VAE生成新的圖像,以下關(guān)于VAE的描述,正確的是:()A.VAE通過(guò)學(xué)習(xí)數(shù)據(jù)的潛在分布來(lái)生成新的圖像,生成的圖像與原始數(shù)據(jù)完全相同B.VAE生成的圖像質(zhì)量不如生成對(duì)抗網(wǎng)絡(luò)(GAN),因此在實(shí)際應(yīng)用中逐漸被淘汰C.VAE可以在生成圖像的同時(shí)對(duì)圖像進(jìn)行壓縮和編碼,節(jié)省存儲(chǔ)空間D.VAE只能用于生成簡(jiǎn)單的圖像,如數(shù)字和幾何圖形,無(wú)法生成復(fù)雜的自然圖像21、人工智能在金融風(fēng)險(xiǎn)預(yù)測(cè)中具有應(yīng)用潛力。假設(shè)要預(yù)測(cè)股票市場(chǎng)的波動(dòng),以下哪種數(shù)據(jù)來(lái)源可能對(duì)預(yù)測(cè)結(jié)果的準(zhǔn)確性提升幫助最?。浚ǎ〢.公司的財(cái)務(wù)報(bào)表B.社交媒體上的輿論C.歷史天氣數(shù)據(jù)D.宏觀經(jīng)濟(jì)指標(biāo)22、人工智能中的語(yǔ)音識(shí)別技術(shù)正在改變?nèi)藗兣c計(jì)算機(jī)的交互方式。假設(shè)要開(kāi)發(fā)一個(gè)能夠準(zhǔn)確識(shí)別不同口音和語(yǔ)速的語(yǔ)音識(shí)別系統(tǒng)。以下關(guān)于語(yǔ)音識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.特征提取是語(yǔ)音識(shí)別中的關(guān)鍵步驟,用于將語(yǔ)音信號(hào)轉(zhuǎn)換為可處理的特征向量B.聲學(xué)模型和語(yǔ)言模型共同作用,提高語(yǔ)音識(shí)別的準(zhǔn)確率C.語(yǔ)音識(shí)別系統(tǒng)對(duì)于背景噪音和多人同時(shí)說(shuō)話的場(chǎng)景能夠輕松應(yīng)對(duì),不受任何影響D.不斷增加訓(xùn)練數(shù)據(jù)的多樣性和規(guī)模,可以改善語(yǔ)音識(shí)別系統(tǒng)在復(fù)雜場(chǎng)景下的性能23、假設(shè)在一個(gè)智能農(nóng)業(yè)的應(yīng)用中,需要利用人工智能技術(shù)來(lái)監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況并預(yù)測(cè)病蟲(chóng)害的發(fā)生,以下哪種數(shù)據(jù)源和分析方法可能是重要的組成部分?()A.衛(wèi)星圖像和圖像分析B.傳感器數(shù)據(jù)和時(shí)間序列分析C.氣象數(shù)據(jù)和機(jī)器學(xué)習(xí)模型D.以上都是24、當(dāng)利用人工智能進(jìn)行音樂(lè)創(chuàng)作,生成具有創(chuàng)新性和藝術(shù)價(jià)值的音樂(lè)作品,以下哪種方法和技術(shù)可能會(huì)被運(yùn)用?()A.基于模板的生成B.基于風(fēng)格遷移C.基于生成模型D.以上都是25、人工智能在教育領(lǐng)域的應(yīng)用逐漸增多,例如個(gè)性化學(xué)習(xí)、智能輔導(dǎo)系統(tǒng)等。以下關(guān)于人工智能在教育領(lǐng)域應(yīng)用的說(shuō)法,錯(cuò)誤的是()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點(diǎn),為其提供個(gè)性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r(shí)監(jiān)測(cè)學(xué)生的學(xué)習(xí)狀態(tài),及時(shí)給予反饋和指導(dǎo)C.人工智能在教育領(lǐng)域的應(yīng)用可以完全取代教師的作用,實(shí)現(xiàn)教育的自動(dòng)化D.有助于提高教育的效率和質(zhì)量,但也需要關(guān)注學(xué)生的隱私和數(shù)據(jù)安全問(wèn)題26、在人工智能的語(yǔ)音合成任務(wù)中,假設(shè)要生成自然流暢且富有情感的語(yǔ)音,以下關(guān)于模型訓(xùn)練的方法,哪一項(xiàng)是不正確的?()A.使用大量的語(yǔ)音數(shù)據(jù)進(jìn)行訓(xùn)練,包括不同的口音和情感B.引入情感標(biāo)簽,讓模型學(xué)習(xí)不同情感下的語(yǔ)音特征C.只訓(xùn)練模型生成單一的語(yǔ)音風(fēng)格,以保證一致性D.結(jié)合聲學(xué)模型和語(yǔ)言模型,提高語(yǔ)音合成的質(zhì)量27、在人工智能的發(fā)展過(guò)程中,算法的創(chuàng)新起著關(guān)鍵作用。假設(shè)我們要設(shè)計(jì)一種新的人工智能算法,以下關(guān)于算法設(shè)計(jì)的原則,哪一項(xiàng)是不正確的?()A.高效性B.可擴(kuò)展性C.復(fù)雜性優(yōu)先D.創(chuàng)新性28、強(qiáng)化學(xué)習(xí)是一種通過(guò)與環(huán)境交互來(lái)學(xué)習(xí)最優(yōu)策略的方法。假設(shè)有一個(gè)機(jī)器人需要通過(guò)學(xué)習(xí)在復(fù)雜的環(huán)境中行走,并且根據(jù)行走的效果獲得獎(jiǎng)勵(lì)或懲罰。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.智能體通過(guò)不斷嘗試和錯(cuò)誤來(lái)改進(jìn)策略B.獎(jiǎng)勵(lì)信號(hào)對(duì)于智能體的學(xué)習(xí)至關(guān)重要C.強(qiáng)化學(xué)習(xí)不需要對(duì)環(huán)境進(jìn)行建模D.智能體的最終目標(biāo)是最大化累積獎(jiǎng)勵(lì)29、人工智能中的遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型來(lái)加速新任務(wù)的學(xué)習(xí)。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型遷移到醫(yī)學(xué)圖像分析任務(wù)中,以下關(guān)于遷移學(xué)習(xí)的步驟,哪一項(xiàng)是不準(zhǔn)確的?()A.凍結(jié)預(yù)訓(xùn)練模型的部分層,只訓(xùn)練特定任務(wù)相關(guān)的層B.直接在新的醫(yī)學(xué)圖像數(shù)據(jù)集上微調(diào)整個(gè)預(yù)訓(xùn)練模型C.對(duì)新的數(shù)據(jù)集進(jìn)行數(shù)據(jù)增強(qiáng),以增加數(shù)據(jù)的多樣性D.分析預(yù)訓(xùn)練模型和新任務(wù)之間的差異,選擇合適的遷移策略30、在人工智能的遷移學(xué)習(xí)中,假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用到一個(gè)特定領(lǐng)域的小數(shù)據(jù)集上。以下哪種方法能夠有效地利用預(yù)訓(xùn)練模型的知識(shí)?()A.直接在新數(shù)據(jù)集上微調(diào)預(yù)訓(xùn)練模型B.重新訓(xùn)練一個(gè)新的模型,不使用預(yù)訓(xùn)練模型C.只使用預(yù)訓(xùn)練模型的最后一層輸出D.拋棄預(yù)訓(xùn)練模型,完全依靠隨機(jī)初始化訓(xùn)練二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用聚類算法對(duì)生物醫(yī)學(xué)數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)不同的疾病亞型和治療反應(yīng),為個(gè)性化醫(yī)療提供支持。2、(本題5分)運(yùn)用Python中的OpenCV庫(kù),實(shí)現(xiàn)對(duì)視頻中的目標(biāo)進(jìn)行跟蹤。選擇合適的跟蹤算法,對(duì)視頻中的特定目標(biāo)進(jìn)行持續(xù)跟蹤,并輸出目標(biāo)的運(yùn)動(dòng)軌跡。3、(本題5分)使用機(jī)器學(xué)習(xí)算法對(duì)一組圖像進(jìn)行分類,如將動(dòng)物圖片分為不同的種類,包括數(shù)據(jù)預(yù)處理、模型選擇和訓(xùn)練、評(píng)估等步驟。4、(本題5分)在Python中,運(yùn)用強(qiáng)化學(xué)習(xí)算法,如策略梯度算法,讓智能體學(xué)習(xí)在一個(gè)模擬的機(jī)器人足球比賽中制定最佳的進(jìn)攻和防守策略。設(shè)計(jì)比賽環(huán)境、動(dòng)作空間和獎(jiǎng)勵(lì)機(jī)制,觀察智能體在訓(xùn)練過(guò)程中的策略改進(jìn)和比賽表現(xiàn)。5、(本題5分)使用Python的Keras庫(kù),構(gòu)建一個(gè)基于強(qiáng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流行業(yè)工作計(jì)劃范文
- 低保科工作計(jì)劃
- 酒店銷售部工作總結(jié)及計(jì)劃范文
- 2025年部門(mén)銷售主管工作計(jì)劃范文
- 醫(yī)院信息中心工作計(jì)劃范文
- 政研室工作計(jì)劃
- 《E芯片試產(chǎn)報(bào)告》課件
- 《大學(xué)有機(jī)化學(xué)》課件
- 合同 條款 內(nèi)部邏輯
- 投標(biāo)合同條款
- 安徽省合肥市包河區(qū)2023-2024學(xué)年三年級(jí)上學(xué)期語(yǔ)文期末試卷
- 【MOOC】新媒體文化十二講-暨南大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 2024-2025學(xué)年二年級(jí)數(shù)學(xué)上冊(cè)期末樂(lè)考非紙筆測(cè)試題(二 )(蘇教版)
- 2024年度智能制造生產(chǎn)線改造項(xiàng)目合同
- 2024年度食堂檔口承包合同(含菜品研發(fā))3篇
- DB32T 4578.2-2023 丙型病毒性肝炎防治技術(shù)指南 第2部分:患者管理
- 護(hù)理輪科心得
- 北京市西城區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期語(yǔ)文期末試卷
- 2025年蛇年年會(huì)匯報(bào)年終總結(jié)大會(huì)模板
- 九年級(jí)學(xué)業(yè)水平-信息技術(shù)考試試題題庫(kù)及答案
- GA 1804-2022危險(xiǎn)化學(xué)品生產(chǎn)企業(yè)反恐怖防范要求
評(píng)論
0/150
提交評(píng)論