




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
CapabilitiesandrisksfromfrontierAI
AdiscussionpaperontheneedforfurtherresearchintoAIrisk
October2023
Acknowledgements
Wewouldliketothanktheexpertreviewpanel,YoshuaBengio,SaraHooker,Arvind
Narayanan,WilliamIsaac,PaulChristiano,IreneSolaiman,AlexanderBabutaandJohnMcDermidfortheirinsightfulcommentsandfeedback.
ThisreportisadiscussionpapertosupporttheAISafetySummit,anddoesnotrepresentapolicypositionofHMGorrepresenttheviewsoftheexpertreviewpanelabove,whoonlyprovidedcommentsforconsideration.
FrontierAI–CapabilitiesandRisks
Contents
Introduction 4
WhatisthecurrentstateoffrontierAIcapabilities? 5
HowfrontierAIworks 5
FrontierAIcanperformmanyeconomicallyusefultasks 7
FrontierAImodelscanbeaugmentedwithtoolstomakethemmoreautonomous 7
FrontierAIcouldbemorecapablethanevaluationsindicate 8
LimitationsoffrontierAI 9
HowmightfrontierAIcapabilitiesimproveinthefuture? 10
RecentAIprogresshasbeenrapid 10
Recentprogresswasdrivenbysystematictrendsincompute,dataandalgorithms 11
Scalinglaws:performanceimprovespredictablywithincreasedcomputeanddata 12
RapidAIprogressislikelytocontinueforseveralyears 14
Advancedgeneral-purposeAIagentsmightbedevelopedinthefuture 15
WhatrisksdofrontierAIpresent? 15
Crosscuttingriskfactors 16
Itisdifficulttodesignsafefrontiermodelsinopen-endeddomains 16
EvaluatingthesafetyoffrontierAIsystemsisanopenchallenge 16
ItmaybedifficulttotrackhowfrontierAIsystemsaredeployedorused 17
AIsafetystandardshavenotyetbeenestablished 18
InsufficientincentivesforAIdeveloperstoinvestintoriskmitigationmeasures 18
TheremaybesignificantconcentrationofmarketpowerinAI 19
Societalharms 19
Degradationoftheinformationenvironment 19
Labourmarketdisruption 20
Bias,FairnessandRepresentationalHarms 21
Misuserisks 22
DualUseSciencerisks 22
Cyber 23
DisinformationandInfluenceOperations 25
Lossofcontrol 25
HumansmightincreasinglyhandovercontroltomisalignedAIsystems 26
FutureAIsystemsmightactivelyreducehumancontrol 26
Conclusion 28
Glossary 29
FrontierAI–CapabilitiesandRisks
4
Introduction
Weareinthemidstofatechnologicalrevolutionthatwillfundamentallyalterthewaywelive,work,andrelatetooneanother.ArtificialIntelligence(AI)promisestotransformnearlyeveryaspectofoureconomyandsociety.Theopportunitiesaretransformational-advancingdrugdiscovery,makingtransportsaferandcleaner,improvingpublicservices,speedingupandimprovingdiagnosisandtreatmentofdiseaseslikecancerandmuchmore.
DevelopmentsinfrontierAIaretransformingproductivityandsoftwareservices,whichwill
multiplytheproductivityofmanyindustriesandsectors.1ThisprogressinfrontierAIinrecentyearshasbeenrapid,andthemostadvancedsystemscanwritetextfluentlyandatlength,
writewell-functioningcodefromnaturallanguageinstructions,makenewapps,scorehighlyonschoolexams,generateconvincingnewsarticles,translatebetweenmanylanguages,
summariselengthydocuments,amongstothercapabilities.Theopportunitiesarevast,andthereisgreatpotentialforincreasingtheproductivityofworkersofallkinds.
However,thesehugeopportunitiescomewithrisksthatcouldthreatenglobalstabilityand
undermineourvalues.Toseizetheopportunities,wemustunderstandandaddresstherisks.AIposesrisksinwaysthatdonotrespectnationalboundaries.Itisimportantthat
governments,academia,businesses,andcivilsocietyworktogethertonavigatetheserisks,
whicharecomplexandhardtopredict,tomitigatethepotentialdangersandensureAIbenefitssociety.
TheUKGovernmentbelievesmoreresearchintoAIriskisneeded.Thisreportexplainswhy.ItdescribesthecurrentstateandkeytrendsrelatingtofrontierAIcapabilities,andthenexploreshowfrontierAIcapabilitiesmightevolveinthefutureandreviewssomekeyrisks.Thereis
significantuncertaintyaroundboththecapabilitiesandrisksfromAI,includingsomeexpertswhobelievethatsomeoftheserisksareoverstated.Thisreportfocusesonevidenceforrisksandconcludesthatdoingfurtherresearchisnecessary.
Thisreportcoversmanyrisks,butwewishtoemphasisethattheoverarchingriskisalossoftrustinandtrustworthinessofthistechnologywhichwouldpermanentlydenyusandfuture
generationsitstransformativepositivebenefits.Indiscussingtheotherrisks,wedosoinordertogalvanizeactiontomitigatethem,suchthatwecancapturethefullbenefitsoffrontierAI.
DefiningAIischallengingasitremainsaquicklyevolvingtechnology.ForthepurposesoftheSummitwedefine“frontierAI”ashighlycapablegeneral-purposeAImodelsthatcanperformawidevarietyoftasksandmatchorexceedthecapabilitiespresentintoday’smostadvanced
models(seeFigure1).2Today,thisprimarilyincludeslargelanguagemodels(LLMs)3suchasthoseunderlyingChatGPT,4Claude,5andBard.6However,itisimportanttonotethat,bothtodayandinthefuture,frontierAIsystemsmaynotbeunderpinnedbyLLMs,andcouldbe
underpinnedbyanothertechnology.
5
Figure1:ScopeoftheAISafetySummit-2023
AlphaGo,AlphaFoldorDALLE3whichcannotperformaswideavarietyoftasks.8
ThelimitedfocusofthisreportmeanswedonotcoverpowerfulnarrowAI7systemslike
TherearealreadyanumberofexistinginternationaleffortsandinitiativeswhichtouchuponthecapabilitiesandrisksoffrontierAI.TheupcomingAISafetySummitwillprovidespacefora
focusedanddeepdiscussiononAIsafetyatthefrontierandwhatfurtheractionneedstobetaken,complementingexistinginitiatives,andthisreportisintendedtobearesourceforall.
Thisreportisbynomeansconclusive;therearemanyrisksweomitandweencouragereaderstoviewitasthestartofaconversation.
WhatisthecurrentstateoffrontierAIcapabilities?
FrontierAIcanperformawidevarietyoftasks,isbeingaugmentedwithtoolsto
enhanceitscapabilities,andisbeingincreasinglyintegratedintosystemsthatcanhaveawideimpactontheeconomyandsociety.Althoughthesemodelsstillhavemajor
limitationssuchastheirfactualityandreliability,theircurrentcapabilitiesare
impressive,maybegreaterthanwehavebeenabletoassess,andhaveappearedfasterthanweexpected.
HowfrontierAIworks
FrontierAIcompaniessuchasOpenAI,DeepMindandAnthropicdeveloplargelanguagemodels(LLMs)suchasGPT-4intwophases:pre-trainingandfine-tuning.
Duringpre-training,anLLM“reads”millionsorbillionsoftextdocuments.9Asitreads,wordbyword,10itpredictswhatwordwillcomenext.Atthestartofpre-trainingitpredictsrandomly,but
6
asitseesmoredataitlearnsfromitsmistakesandimprovesitspredictiveperformance.Oncepre-trainingisover,themodelissignificantlybetterthanhumansatpredictingthenextwordofarandomlychosentextdocument.11
Duringfine-tuning,12thepre-trainedAIisfurthertrainedonhighlycurateddatasets,whicharefocusedonmorespecialisedtasks,orarestructuredtodirectmodelbehaviourinwayswhichareinalignmentwithdevelopervaluesanduserexpectations13
Increasingly,frontierAImodelsaremulti-modal.Inadditiontotext,theycangenerateandprocessotherdatatypessuchasimages,video,andsound.14
Thekeyinputstodevelopmentarecomputationalresources(“compute”15)totrainandrunthemodel,dataforittolearnfrom,thealgorithmsthatdefinethistrainingprocess,andtalentandexpertisethatenableallofthis.16Thevastmajorityofcomputeisspentonpre-training,whichiswhenmostcorecapabilitiesarelearntbyamodel.17
ThetotaldevelopmentcostsforthemostcapablefrontierAImodelstodayrunsintothetensofmillionsofpounds,18withcostsexpectedtosoonreachintothehundredsofmillionsorevenbillionsofpounds.19Whilethebestperformingmodelsaredevelopedbyasmallnumberof
well-resourcedorganisations,alargernumberofsmallerentitiesbuildproductsontopofthesefrontiermodelsforspecificmarkets.20
Thebelowdiagramoutlinestheinputsto,andstagesof,thedevelopmentanddeploymentoffrontierAI.
Figure2.Anoverviewoffoundationmodeldevelopment,traininganddeployment.From
AIFoundationModels:initialreview,
CMA,2023.
7
FrontierAIcanperformmanyeconomicallyusefultasks
Simplyfrombeingtrainedtopredictthenextwordacrossdiversedatasets,modelsdevelopsophisticatedcapabilities.21Forexample,frontierAIcan(withvaryingdegreesofsuccessandreliability):
●Conversefluentlyandatlength,drawingonextensiveinformationcontainedintrainingdata.
●Writelongsequencesofwell-functioningcodefromnaturallanguageinstructions,includingmakingnewapps.22
●Scorehighlyonhigh-schoolandundergraduateexaminationsinmanysubjects.23
●Generateplausiblenewsarticles.24
●Creativelycombineideastogetherfromverydifferentdomains.25
●Explainwhynovelsophisticatedjokesarefunny.26
●Translatebetweenmultiplelanguages.27
●Directtheactivitiesofrobotsviareasoning,planningandmovementcontrol.28
●Analysedatabyplottinggraphsandcalculatingkeyquantities.29
●Answerquestionsaboutimagesthatrequirecommon-sensereasoning.30
●Solvemathsproblemsfromhigh-schoolcompetitions.31
●Summariselengthydocuments.32
Thesecapabilitiesshowpotentialtobeappliedacrossawidearrayofeconomicuse-cases.Inadditiontosomeoftheapplicationsabove,frontierAIhasbeenusedto:
●Improvetheperformanceofleadingconsultantsindevelopinggo-to-marketplans.33
●Automateawidevarietyoflegalwork.34
●Supportleadingwealthmanagers.35
●Increasetheproductivityofcall-centreworkers.36
●Accelerateacademicresearch,forexampleineconomics.37
AnnexAprovidesmoredetailonAIcapabilitiesincontentcreation,computervision,theoryofmind,memory,mathematics,physicalintuition,androbotics.
FrontierAImodelscanbeaugmentedwithtoolstomakethemmoreautonomous
FrontierAImodelsaremoreusefulwhenaugmentedwithothertoolsandsoftware.
8
FrontierAImodels,beforetheyareaugmented,respondtoarequestsimplybyproducingasnippetoftext.Bycontrast,autonomous38AIagents39cantakelongsequencesofactionsinpursuitofagoal,withoutrequiringhumaninvolvement.
Researchershavebuiltsoftwareprogramscalled“scaffolds”40thatallowfrontierAImodelstopowerautonomousAIagents.ThescaffoldpromptstheAImodeltocreateaplanforachievingahigh-levelgoalandtothenexecutetheplanstepbystep.ThescaffoldaugmentstheAI
modelwithtoolslikewebbrowsers,allowingittoexecuteeachstepautonomously.Theresultantsystem,builtoutoftheAImodelandthescaffold,isanAIagent.AutoGPTisthemostwell-publicisedexampleofsuchanAIagentasoflate2023.41
Today’sAIagentscurrentlystruggletoperformmosttasks–theyoftengetstuckinloopsandcannotself-correct,orfailatcrucialsteps.However,theydoallowfrontierAItoperformsomeentirelynewtasks.ExamplesoftasksthatAIagentscancurrentlydoinclude:
●Findspecificinformationbybrowsingtheinternet.42
●Organisepartiesinsimulated‘TheSims’-likeenvironments.43
●Solvecomplexproblemsinopen-worldsurvivalgameslikeMinecraft44andCrafter45.
●Supportthesynthesisofchemicalsbysearchingthewebforrelevantinformationandwritingcodetooperaterobotichardware.46
ManyleadingAIresearchersandcompaniesexplicitlyaimtobuildAIagentswhosegeneralcapabilitieswouldexceedthoseofhumans.47
FrontierAIcouldbemorecapablethanevaluationsindicate
ResearchersandusersfrequentlyuncoversurprisingcapabilitiesforfrontierAImodelswhichpre-deploymentevaluationdidnotuncover.48
ThecapabilitiesoffrontierAImodelsarelikelytobefurtherenhancedinmanywaysinthefuture,suchasthrough:
●Betterprompts.49ThewaythataquestionisphrasedcansignificantlyaffectafrontierAIsystem’sresponse.Forexample,encouragingamodeltothinkthroughitsanswer“stepbystep”significantlyimprovesperformanceonmathsandlogicproblems.50
●Bettertools.FrontierAImodelscanbetrainedtousetoolslikewebbrowsers,
calculators,knowledgedatabases,orrobotactuators,andcancompetentlyuseentirelynewtoolswhenprovidedtextinstructionsonhowtousethem51.Thesetoolsand
resourcescansignificantlyimprovecapabilitiesatrelevanttasksorendowthemwithentirelynovelcapabilities,suchastheabilitytodirectlymanipulatephysicalsystems.52
●Betterscaffolds.Scaffoldingsoftwareprograms(“scaffolds”)structuretheinformationflowofanAImodel,leavingthemodelitselfunchanged.53Betterscaffoldscould,forexample,helpanAIagentself-correctwhentheyhavemadeamistake,54orimprovetheirlong-termmemory.
●Newfine-tuningdata.Fine-tuningonhigh-qualitydatacansignificantlyimproveAIcapabilitiesinagivendomain,atatinyfractionofthecostofpre-training.
9
●Team-workbetweenAIsystems.MultipledifferentAIsystems,includingbothnarrowmodelsandmoregeneralmodels,couldcollaboratetoperformtasks.55
Unlikepre-training,theseimprovementsdonotrequiresignificantcomputationalresourcesandsoawiderangeofactorscouldcheaplyimprovefrontierAIcapabilities,providedthey
haveeasyaccesstopre-trainedmodels.
LimitationsoffrontierAI
ThereisongoingdebateaboutthelimitationsoffrontierAIsystems,includingwhethertheirperformanceisdrivenmorebygeneralreasoningorbyacombinationofmemorisationandfollowingbasicheuristics56.
GeneralreasoningabilitiesareevidencedbyfrontierAIproducingremarkablyaptresponsestonovelquestions,Forexample,PaLM’sabilitytounderstandthehumourbehindjokeswhich
hadneverbeforebeentold.57
However,thereisalsoevidencethatmodelsrelyheavilyonmemorisationandbasicheuristics:
●LLMsperformlesswellwhenaquestionisrewordedtomakeitdifferentfromtextthatisintheirtrainingdata.58
●LLMsoftensolvecomplexproblemsusingoverly-simpleheuristicsthatwouldfailtosolveothersimilarproblems.59
●ThereareinstanceswhereLLMsfailtoapplyinformationfromtheirtrainingdatainverybasicways.60
Beyondanuncertainabilitytogeneralisetonewcontexts,otherkeylimitationsofcurrentfrontierAImodelsinclude:
●Hallucinations:AIsystemsregularlyproduceplausibleyetincorrectanswersandstatetheseanswerswithhighconfidence.61Thismightbeaddressedbysystemsusing
knowledgerepositories,62improvedfine-tuning,ornewmethodsforteachingthemodelwhatitdoesanddoesnotknow.
●Coherenceoverextendeddurations:AImodelsarelessreliableontasksthatrequirelong-termplanningortakingalargenumberofsequentialsteps(e.g.writinganovel).63Thisispartiallyduetotheirrestrictedcontextlengthandthescarcityoflong-duration
tasktrainingdata.64TheselimitationsmightbeaddressedbyalgorithmicinnovationstogiveAIasourceoflong-termmemory,creatingmoredataonlong-horizontasks,betterscaffoldsthathelpAIagentsspotandcorrecttheirownerrors,65orimprovedtechniquesforbreakinglongtasksintomultiplesmallsteps66.
●Lackofdetailedcontext:Manytasksintherealeconomyrequireextensivecontextaboutaparticularcompany,project,orcode-base.Currentfrontiersystemsare
genericallycompetent,butlackthisspecificcontextandcannotlearnitfromthe
availabledata.Thismightbeaddressedbyaccesstoadditionalprivatedatasources,newdatagenerationtechniques,moredata-efficientfine-tuningtechniques,new
“model-based”learningmethods,67orsimplybyincreasingthecomputeanddatausedtodevelopthesystem.
10
Itremainsuncertainhowtheselimitationswillevolve.SomearguethattheselimitationswillpermanentlylimitfrontierAIdevelopmentincertainapplications.Ontheotherhand,recentprogressinAIhasgreatlysurpassedexpertpredictionsinmanydomains,while
underperforminginotherareas.68
HowmightfrontierAIcapabilitiesimproveinthefuture?
RecentAIprogresshasbeenrapidandwilllikelycontinue.Thisisduetopredictable
improvementsintheperformanceoffrontierAImodelswhendevelopedwithmore
compute,moredataandbetteralgorithms.Unexpectednewcapabilitiesmayalso
emerge.Advancedgeneral-purposeAIagentscouldbedevelopedinthenottoodistantfuture–althoughthisisasubjectofdebate,especiallyregardingthetiming.
RecentAIprogresshasbeenrapid
TherecentpaceofAIprogresshassurprisedforecastersandmachinelearningexpertsalike.69ProblemsthatfrustratedtheAIcommunityfordecadeshaverapidlyfallentoever-more-
capablemodels.
Figure3.AnoverviewofnotableAIachievementsfrom2022-2023acrossdiversedomains,Epoch2023
RecentadvancesinfrontierAIarethecontinuationofalonger-runningtrend:therapid
progresssince2012initsparentfieldofdeeplearningacrosscomputervision,gameplaying,andlanguagemodelling.70In2014,AIcouldonlygeneratesimple,blurryimages.However,by2022,modelslikeDALL-E2andImagencouldgeneratehigh-quality,creativeimagesfromtextprompts(seefigure4a).SubstantialadvanceswereseenintheshiftfromGPT-3.5toGPT-4,releasedjustmonthsapart.Forexample,oncalculusquestionsGPT-3.5scoredbelowmost
humans,butGPT-4improvedsignificantlyandscoredaroundthemedianhumanlevel.
11
Figure4b.CompletionsfromGPT-2to
Figure4a.Timelineofimagesgeneratedbyimagemodelsfrom
OurWorldinData
GPT-4.GPT-4completionfrom
Bubeck
etal.,2023.
Recentprogresswasdrivenbysystematictrendsincompute,dataandalgorithms
AstandardanalysisofprogressinAIcapabilitiesconsidersthreekeyfactors:computingpower,data,andimprovementsintheunderlyingalgorithms.71
Computingpower(“compute”forshort)referstothenumberofoperationsthatareperformed,usuallyinthecontextoftrainingAIsystems.Theamountofcomputeusedduringtraininghasexpandedoverthepastdecadebyafactorof55million:fromsystemstrainedbysingle
researchersatthecostofafewpounds,tosystemstrainedonmultipleGPUclustersby
companiesatthecostofmanymillionsofpounds.72Thistrendismostlytheresultofspendingmoremoneyoncompute,aswellastheresultofsignificanttechnologicalimprovementsto
computinghardware.73
Trainingalgorithmshavealsoimprovedsubstantiallyoverthepastdecade,sothattoday’s
machinelearningmodelscanachievethesameperformancewithlesscomputeanddatathan
thoseofthepast.Researchsuggeststhatbetteralgorithmsroughlyhalvedcompute
requirementseachyearforvisionandlanguagemodels.74MassiveamountsofdatahavealsoplayedanimportantroleinrecentAIprogress.AIdevelopershavetappedintoreadilyavailabledatasetsscrapedfromtheinternet,withtheamountoftrainingdatausedgrowingatover50%peryear.75
Enhancementsappliedafterinitialtraininghavefurtheraugmentedsystemcapabilities.Thesepost-trainingenhancementsincludeimproveddataforfine-tuning,76equippingmodelswith
toolslikecalculators,77webbrowsers78,andbetterprompts.79Post-trainingenhancementscansignificantlyimproveperformanceinspecificdomainsatasmallfractionoftheoriginaltrainingcost,80andsoawiderangeofactorscanusethemtoimprovefrontierAIcapabilities.
12
Scalinglaws:performanceimprovespredictablywithincreasedcomputeanddata
ThekeydriverfortheincreaseincomputeanddataisthatfrontierAImodelperformance
predictablyimproveswithmodelscale.Researchershavediscoveredso-called“scaling
laws”,81whichcanpredict,givenaparticularamountofcomputeanddata,afrontierAImodel’sperformanceatthespecifictaskofpredictingthenextword(thetaskusedtotrainthese
models).
Figure5a.Trainingerrorreduces
predictablywithcomputeacrossa
broadrangeofempirically-studied
trainingruns.Figurefrom
Hoffmannet
al,2022.
Figure5b.ExponentialincreaseintrainingcomputeforOpenAI'sGPTmodelsfrom2018to2023.82Epoch.
Nextwordpredictionhascontinuallyimprovedovertimeasdevelopershavescaledtheir
trainingcomputeanddata.Itisuncertainhowlongthistrendwillcontinue,butithasheldovermanyordersofmagnitudeofcomputeanddatasetsizeincreaseswithoutbreaking.
Whilethenextwordpredictiontaskisnotitselfwhatwecareabout,itisusedasanindicatorofmodelcapabilitiessinceitisstronglycorrelatedwithperformanceinmanydownstreamtasks.83Forexample,ifamodelisextremelygoodatnextwordpredictiononcodeandmathematics
data,itismorelikelytobegoodatsolvingprogrammingpuzzlesandmathematicsproblems.
13
Figure6.PerformanceonbroadbenchmarkssuchasBIG-BenchandMMLUimproveswithmoretrainingcompute.ThisfigurewastakenfromOwen2023.
Althoughaverageperformance,aggregatedacrossmanydownstreamtasks,improvesfairlypredictablywithscale,itismuchhardertopredictperformanceimprovementsatspecificreal-worldproblems.ThedevelopmentoffrontierAIsystemshasinvolvedmanyexamplesof
surprisingcapabilities,unanticipatedbymodeldevelopersbeforetrainingandoftenonly
discoveredbyusersafterdeployment.Therearedocumentedexamplesofunexpected
capabilitieswheremodelswerenotshowinganysignsofimprovementbeforeacertainscaleandthenrapidlyimprovedsuddenly84–thoughtheinterpretationoftheseexamplesis
contested.85Inanycase,wecannotcurrentlyreliablypredictaheadoftimewhichspecificnewcapabilitiesafrontierAImodelwillgainwhenitistrainedwithmorecomputeanddata.
14
Figure7.IndividualcapabilitiesmayappearsuddenlyorunexpectedlyasthecomputeusedtodevelopAIincreases.Figurefrom
Weietal,2022.
RapidAIprogressislikelytocontinueforseveralyears
TherecentimprovementinAIcapabilitiesisnottheresultofasinglebreakthroughbutratheraconcertedadvancementacrossmultipledimensions,includingalgorithms,spendingon
compute,improvementsinhardwareperformance,andpost-trainingenhancements.Allofthesefactorscanindependentlyenhanceprogress,meaningthatchallengesorlimitsinanysingleoneofthemisunlikelytostopprogressinAIasawhole.
InvestmentsinAIwillcontinuetogrowrapidlyoverthenextfewyears.86LeadingAIdeveloperslikeAnthropicandOpenAIhavegarneredsignificantfundingandestablishedcloud
partnerships,inlargeparttosupportfurtherscalingofcompute.87HardwaremanufacturerslikeTSMCarereportedlyexpandingtheirproductionofAIchips,againsuggestingthatmore
computationalresourceswillbeavailablefortraining.88
However,sustainingtherateofrecentrapidscaleupofcomputeanddatapast2030islikelytorequirenewapproaches.Developerswouldhavetoi)spendhundredsofbillionsofpoundsoncomputeforasingletrainingrun89andii)findwaystogeneratesufficienthigh-qualitydata
goingbeyondwhatisreadilyavailableontheinternet.90Havingsaidthis,improvementsinalgorithmicefficiencymayreducecomputeneeds,suchthatcomputemightnotbeabindingconstraint.
NovelresearchdirectionsthatcouldfurtheracceleratefrontierAIprogressinclude:
15
●Enrichedtrainingdata–e.g.experthumanfeedback,AIgeneratedsyntheticfeedback,anddatapruning–mayincreasedataefficiency,improvecapabilitiesonchallengingscientificproblems,andreducecosts.91
●Multimodaltraining,whichmayofferincreasingsynergiesbetweenthedifferent
modalitiesandthepotentialforfrontierAItoprocessandproducetext,images,audioandvideo.92
●TrainingfrontierAItoactasanautonomousagentthatnavigatestheinternetasahumanandperformslongsequencesofactions,usingtheabovetechniquesto
generatecheapdataforlearningtheseskills.93
Importantly,thereisalsotheprospectthatAIsystemsthemselvesaccelerateAIprogress.
FrontierAIisalreadyhelpingAIresearcherstocreatesyntheticdatafortraining,94writenewcode,95andevenimprovemodelarchitectures.96WhileAIresearchiscurrentlymostlynon-automated,increasedautomationbyfuturefrontierAIsystemsmayacceleratethepaceofAIprogresssignificantly.97ThiscouldmeanwedevelopverycapableAIsystemssoonerthatwewouldotherwiseexpect,andhavelesstimetopreparefortheassociatedrisks.
Advancedgeneral-purposeAIagentsmightbedevelopedinthefuture
RecentprogressinAIhasprompteddiscussionregardingthepotentialnear-termdevelopment
ofadvancedgeneral-purpose,highlyautonomousAIagentsthatcanperformmosteconomicallyvaluabletasksbetterthanhumanexperts.
SeveralleadingAIcompaniesexplicitlyaimtobuildsuchsystems,98andbelievethattheymaysucceedthisdecade.99Somesurveysofpublishedmachinelearningresearchershavefoundthemedianrespondentpredictsagreaterthan10%chanceofhuman-levelmachine
intelligenceby2035,thoughthesesurveyshavebeencritiqued.100Attemptsatforecastingthedevelopmentofhuman-levelmachineintelligencebasedonhistorictrendsincomputingcostsandgrowthinAIresearchinputssometimesconcludethatthereisagreaterthan10%
probabilityby2035.101
However,thereisalargeamountofuncertaintyaboutthetimelinetothesecapabilities.Many,
ifnotmost,otherresearchersdonotexpectAIsystemsthatgenerallymatchhuman
performancewithintwentyyearsanddonotagreethatitisaconcern.102Historically,andfrequently,therehavebeenpredictionsofimminentAIbreakthroughsthatdidnotcometopass.103
WhatrisksdofrontierAIpresent?
WemustunderstandtherisksassociatedwithfrontierAItosafelyaccessandseizetheopportunitiesandbenefitsthetechnologybrings.
Inthissection,wefirstreviewseveralcross-cuttingriskfactors–technicalandsocietal
conditionsthatcouldaggravatean
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年銀行客服工作總結(jié)模版
- 高中化學(xué)平衡總結(jié)模版
- 基于2025年戰(zhàn)略規(guī)劃的地下空間開發(fā)項目可行性研究報告
- 新零售私域流量運營的顧客體驗管理方案報告
- 數(shù)字化協(xié)同管理在制造業(yè)供應(yīng)鏈協(xié)同智慧服務(wù)中的應(yīng)用報告
- 校園安全管理2025年報告:智慧校園安全設(shè)施設(shè)備升級方案
- 裝備制造業(yè)綠色制造2025:自主創(chuàng)新能力提升與節(jié)能環(huán)保技術(shù)創(chuàng)新
- 人教高中數(shù)學(xué)人教A必修2課件第三章直線與方程章末總結(jié)模版
- 2025年在線職業(yè)技能認(rèn)證平臺項目建議書:打造職業(yè)技能培訓(xùn)行業(yè)領(lǐng)先品牌
- 2025年8月國培校長培訓(xùn)心得體會模版
- 杭汽HNKS50-63-28型汽輪機大修施工方案
- Q∕GDW 12113-2021 邊緣物聯(lián)代理技術(shù)要求
- 電纜溝工程量計算表(土建)
- 初中數(shù)學(xué)課堂教學(xué)中應(yīng)重視學(xué)生閱讀理解能力的培養(yǎng)
- 中層干部因私出國境請假審批表
- 濰柴發(fā)動機WD615系列分解圖冊
- 碎石、砂出廠合格證
- 泵站水錘計算書
- 中國城市規(guī)劃設(shè)計研究院交通評估收費標(biāo)準(zhǔn)
- 配件來源及報價明細表
- IQC供應(yīng)商品質(zhì)管理看板
評論
0/150
提交評論