黑龍江省哈爾濱六中2025屆高三下第一次測試數(shù)學試題含解析_第1頁
黑龍江省哈爾濱六中2025屆高三下第一次測試數(shù)學試題含解析_第2頁
黑龍江省哈爾濱六中2025屆高三下第一次測試數(shù)學試題含解析_第3頁
黑龍江省哈爾濱六中2025屆高三下第一次測試數(shù)學試題含解析_第4頁
黑龍江省哈爾濱六中2025屆高三下第一次測試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省哈爾濱六中2025屆高三下第一次測試數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù)z滿足,則()A. B. C. D.2.港珠澳大橋于2018年10月2刻日正式通車,它是中國境內一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現(xiàn)對大橋某路段上1000輛汽車的行駛速度進行抽樣調查.畫出頻率分布直方圖(如圖),根據(jù)直方圖估計在此路段上汽車行駛速度在區(qū)間[85,90)的車輛數(shù)和行駛速度超過90km/h的頻率分別為()A.300, B.300, C.60, D.60,3.若復數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.4.已知命題,且是的必要不充分條件,則實數(shù)的取值范圍為()A. B. C. D.5.設i是虛數(shù)單位,若復數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.36.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②7.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣858.設,,是非零向量.若,則()A. B. C. D.9.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.10.復數(shù)的共軛復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知函數(shù),,其中為自然對數(shù)的底數(shù),若存在實數(shù),使成立,則實數(shù)的值為()A. B. C. D.12.若復數(shù)(為虛數(shù)單位),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.電影《厲害了,我的國》于2018年3月正式登陸全國院線,網友紛紛表示,看完電影熱血沸騰“我為我的國家驕傲,我為我是中國人驕傲!”《厲害了,我的國》正在召喚我們每一個人,不忘初心,用奮斗書寫無悔人生,小明想約甲、乙、丙、丁四位好朋友一同去看《厲害了,我的國》,并把標識為的四張電影票放在編號分別為1,2,3,4的四個不同的盒子里,讓四位好朋友進行猜測:甲說:第1個盒子里放的是,第3個盒子里放的是乙說:第2個盒子里放的是,第3個盒子里放的是丙說:第4個盒子里放的是,第2個盒子里放的是丁說:第4個盒子里放的是,第3個盒子里放的是小明說:“四位朋友你們都只說對了一半”可以預測,第4個盒子里放的電影票為_________14.已知數(shù)列滿足,則________.15.記為數(shù)列的前項和.若,則______.16.動點到直線的距離和他到點距離相等,直線過且交點的軌跡于兩點,則以為直徑的圓必過_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設點分別是橢圓的左,右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點,過點且斜率的直線與橢圓交于兩點,為線段的中點,直線交直線于點,證明:直線.18.(12分)在數(shù)列中,,(1)求數(shù)列的通項公式;(2)若存在,使得成立,求實數(shù)的最小值19.(12分)已知,函數(shù),(是自然對數(shù)的底數(shù)).(Ⅰ)討論函數(shù)極值點的個數(shù);(Ⅱ)若,且命題“,”是假命題,求實數(shù)的取值范圍.20.(12分)曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)過原點且傾斜角為的射線與曲線分別交于兩點(異于原點),求的取值范圍.21.(12分)已知函數(shù),且.(1)求的解析式;(2)已知,若對任意的,總存在,使得成立,求的取值范圍.22.(10分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),),點.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程,并指出其形狀;(2)曲線與曲線交于,兩點,若,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復數(shù)的運算和模的計算,意在考查學生對這些知識的理解掌握水平.2、B【解析】

由頻率分布直方圖求出在此路段上汽車行駛速度在區(qū)間的頻率即可得到車輛數(shù),同時利用頻率分布直方圖能求行駛速度超過的頻率.【詳解】由頻率分布直方圖得:在此路段上汽車行駛速度在區(qū)間的頻率為,∴在此路段上汽車行駛速度在區(qū)間的車輛數(shù)為:,行駛速度超過的頻率為:.故選:B.【點睛】本題考查頻數(shù)、頻率的求法,考查頻率分布直方圖的性質等基礎知識,考查運算求解能力,是基礎題.3、A【解析】

由得,然后分子分母同時乘以分母的共軛復數(shù)可得復數(shù),從而可得的虛部.【詳解】因為,所以,所以復數(shù)的虛部為.故選A.【點睛】本題考查了復數(shù)的除法運算和復數(shù)的概念,屬于基礎題.復數(shù)除法運算的方法是分子分母同時乘以分母的共軛復數(shù),轉化為乘法運算.4、D【解析】

求出命題不等式的解為,是的必要不充分條件,得是的子集,建立不等式求解.【詳解】解:命題,即:,是的必要不充分條件,,,解得.實數(shù)的取值范圍為.故選:.【點睛】本題考查根據(jù)充分、必要條件求參數(shù)范圍,其思路方法:(1)解決此類問題一般是把充分條件、必要條件或充要條件轉化為集合之間的關系,然后根據(jù)集合之間關系列出關于參數(shù)的不等式(組)求解.(2)求解參數(shù)的取值范圍時,一定要注意區(qū)間端點值的檢驗.5、A【解析】

根據(jù)復數(shù)除法運算化簡,結合純虛數(shù)定義即可求得m的值.【詳解】由復數(shù)的除法運算化簡可得,因為是純虛數(shù),所以,∴,故選:A.【點睛】本題考查了復數(shù)的概念和除法運算,屬于基礎題.6、C【解析】

①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.7、D【解析】

由等比數(shù)列的性質求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【詳解】設等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關系求出公比是解決本題的關鍵,屬于基礎題.8、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標運算、數(shù)量積及平面幾何知識,又能考查學生的數(shù)形結合能力及轉化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉化,再利用①求解(較難);③建系,借助向量的坐標運算,此法對解含垂直關系的問題往往有很好效果.9、D【解析】

構造函數(shù),,利用導數(shù)分析出這兩個函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結合函數(shù)的單調性推導出或,再利用余弦函數(shù)的單調性可得出結論.【詳解】構造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當時,則,;當時,,.由得.①若,則,即,不合乎題意;②若,則,則,此時,,由于函數(shù)在區(qū)間上單調遞增,函數(shù)在區(qū)間上單調遞增,則,;③若,則,則,此時,由于函數(shù)在區(qū)間上單調遞減,函數(shù)在區(qū)間上單調遞增,則,.綜上所述,.故選:D.【點睛】本題考查函數(shù)單調性的應用,構造新函數(shù)是解本題的關鍵,解題時要注意對的取值范圍進行分類討論,考查推理能力,屬于中等題.10、A【解析】

試題分析:由題意可得:.共軛復數(shù)為,故選A.考點:1.復數(shù)的除法運算;2.以及復平面上的點與復數(shù)的關系11、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數(shù),(﹣1,+∞)上是增函數(shù),故當x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當且僅當ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當且僅當?shù)忍柾瑫r成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.12、B【解析】

根據(jù)復數(shù)的除法法則計算,由共軛復數(shù)的概念寫出.【詳解】,,故選:B【點睛】本題主要考查了復數(shù)的除法計算,共軛復數(shù)的概念,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、A或D【解析】

分別假設每一個人一半是對的,然后分別進行驗證即可.【詳解】解:假設甲說:第1個盒子里面放的是是對的,則乙說:第3個盒子里面放的是是對的,丙說:第2個盒子里面放的是是對的,丁說:第4個盒子里面放的是是對的,由此可知第4個盒子里面放的是;假設甲說:第3個盒子里面放的是是對的,則丙說:第4個盒子里面放的是是對的,乙說:第2個盒子里面放的是是對的,丁說:第3個盒子里面放的是是對的,由此可知第4個盒子里面放的是.故第4個盒子里面放的電影票為或.故答案為:或【點睛】本題考查簡單的合情推理,考查推理論證能力、分析判斷能力、歸納總結能力,屬于中檔題.14、【解析】

項和轉化可得,討論是否滿足,分段表示即得解【詳解】當時,由已知,可得,∵,①故,②由①-②得,∴.顯然當時不滿足上式,∴故答案為:【點睛】本題考查了利用求,考查了學生綜合分析,轉化劃歸,數(shù)學運算,分類討論的能力,屬于中檔題.15、1【解析】

由已知數(shù)列遞推式可得數(shù)列是以16為首項,以為公比的等比數(shù)列,再由等比數(shù)列的前項和公式求解.【詳解】由,得,.且,則,即.數(shù)列是以16為首項,以為公比的等比數(shù)列,則.故答案為:1.【點睛】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項和,意在考查學生對這些知識的理解掌握水平.16、【解析】

利用動點到直線的距離和他到點距離相等,,可知動點的軌跡是以為焦點的拋物線,從而可求曲線的方程,將,代入,利用韋達定理,可得,從而可知以為直徑的圓經過原點O.【詳解】設點,由題意可得,,,可得,設直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經過原點.故答案為:(0,0)【點睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時考查了方程的思想和韋達定理,考查了運算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】

(1)設,求出后由二次函數(shù)知識得最小值,從而得,即得橢圓方程;(2)設直線的方程為,代入橢圓方程整理,設,由韋達定理得,設,利用三點共線,求得,然后驗證即可.【詳解】解:(1)設,則,所以,因為.所以當時,值最小,所以,解得,(舍負)所以,所以橢圓的方程為,(2)設直線的方程為,聯(lián)立,得.設,則,設,因為三點共線,又所以,解得.而所以直線軸,即.【點睛】本題考查求橢圓方程,考查直線與橢圓相交問題.直線與橢圓相交問題,采取設而不求思想,設,設直線方程,應用韋達定理,得出,再代入題中需要計算可證明的式子參與化簡變形.18、(1);(2)【解析】

(1)由得,兩式相減可得是從第二項開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當時,,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數(shù)列,∵∴,則,;(2),當時,;當時,設遞增,,所以實數(shù)的最小值.【點睛】本題主要考查地推數(shù)列的應用,屬于中檔題.19、(1)當時,沒有極值點,當時,有一個極小值點.(2)【解析】試題分析:(1),分,討論,當時,對,,當時,解得,在上是減函數(shù),在上是增函數(shù)。所以,當時,沒有極值點,當時,有一個極小值點.(2)原命題為假命題,則逆否命題為真命題。即不等式在區(qū)間內有解。設,所以,設,則,且是增函數(shù),所以。所以分和k>1討論。試題解析:(Ⅰ)因為,所以,當時,對,,所以在是減函數(shù),此時函數(shù)不存在極值,所以函數(shù)沒有極值點;當時,,令,解得,若,則,所以在上是減函數(shù),若,則,所以在上是增函數(shù),當時,取得極小值為,函數(shù)有且僅有一個極小值點,所以當時,沒有極值點,當時,有一個極小值點.(Ⅱ)命題“,”是假命題,則“,”是真命題,即不等式在區(qū)間內有解.若,則設,所以,設,則,且是增函數(shù),所以當時,,所以在上是增函數(shù),,即,所以在上是增函數(shù),所以,即在上恒成立.當時,因為在是增函數(shù),因為,,所以在上存在唯一零點,當時,,在上單調遞減,從而,即,所以在上單調遞減,所以當時,,即.所以不等式在區(qū)間內有解綜上所述,實數(shù)的取值范圍為.20、(1),;(2).【解析】

(1)先將曲線化為普通方程,再由直角坐標系與極坐標系之間的轉化關系:,可得極坐標方程和曲線的直角坐標方程;(2)由已知可得出射線的極坐標方程為,聯(lián)立和的極坐標方程可得點A和點B的極坐標,從而得出,由的范圍可求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論