江蘇省禮嘉中學(xué)2025屆高考考前模擬數(shù)學(xué)試題含解析_第1頁
江蘇省禮嘉中學(xué)2025屆高考考前模擬數(shù)學(xué)試題含解析_第2頁
江蘇省禮嘉中學(xué)2025屆高考考前模擬數(shù)學(xué)試題含解析_第3頁
江蘇省禮嘉中學(xué)2025屆高考考前模擬數(shù)學(xué)試題含解析_第4頁
江蘇省禮嘉中學(xué)2025屆高考考前模擬數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省禮嘉中學(xué)2025屆高考考前模擬數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若的二項(xiàng)式展開式中二項(xiàng)式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.42.若集合,,則()A. B. C. D.3.已知復(fù)數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于第三象限C.的共軛復(fù)數(shù) D.4.已知,,,是球的球面上四個不同的點(diǎn),若,且平面平面,則球的表面積為()A. B. C. D.5.若時,,則的取值范圍為()A. B. C. D.6.存在點(diǎn)在橢圓上,且點(diǎn)M在第一象限,使得過點(diǎn)M且與橢圓在此點(diǎn)的切線垂直的直線經(jīng)過點(diǎn),則橢圓離心率的取值范圍是()A. B. C. D.7.已知向量,,則與共線的單位向量為()A. B.C.或 D.或8.中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.2409.已知點(diǎn)(m,8)在冪函數(shù)的圖象上,設(shè),則()A.b<a<c B.a(chǎn)<b<c C.b<c<a D.a(chǎn)<c<b10.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或911.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.12.已知是函數(shù)圖象上的一點(diǎn),過作圓的兩條切線,切點(diǎn)分別為,則的最小值為()A. B. C.0 D.二、填空題:本題共4小題,每小題5分,共20分。13.若四棱錐的側(cè)面內(nèi)有一動點(diǎn)Q,已知Q到底面的距離與Q到點(diǎn)P的距離之比為正常數(shù)k,且動點(diǎn)Q的軌跡是拋物線,則當(dāng)二面角平面角的大小為時,k的值為______.14.已知二項(xiàng)式ax-1x6的展開式中的常數(shù)項(xiàng)為-16015.若函數(shù),其中且,則______________.16.如圖,在中,已知,為邊的中點(diǎn).若,垂足為,則的值為__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某企業(yè)對設(shè)備進(jìn)行升級改造,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項(xiàng)質(zhì)量指標(biāo)值,該項(xiàng)質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的產(chǎn)品視為合格品,否則視為不合格品,如圖是設(shè)備改造前樣本的頻率分布直方圖,下表是設(shè)備改造后樣本的頻數(shù)分布表.圖:設(shè)備改造前樣本的頻率分布直方圖表:設(shè)備改造后樣本的頻率分布表質(zhì)量指標(biāo)值頻數(shù)2184814162(1)求圖中實(shí)數(shù)的值;(2)企業(yè)將不合格品全部銷毀后,對合格品進(jìn)行等級細(xì)分,質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的定為一等品,每件售價240元;質(zhì)量指標(biāo)值落在區(qū)間或內(nèi)的定為二等品,每件售價180元;其他的合格品定為三等品,每件售價120元,根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.若有一名顧客隨機(jī)購買兩件產(chǎn)品支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望.18.(12分)已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),為數(shù)列的前項(xiàng)和,記,證明:.19.(12分)已知.(1)解關(guān)于x的不等式:;(2)若的最小值為M,且,求證:.20.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是直線上的動點(diǎn),當(dāng)點(diǎn)到平面距離最大時,求面與面所成二面角的正弦值.21.(12分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點(diǎn).(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.22.(10分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點(diǎn)P(點(diǎn)P與點(diǎn)B,C不重合),從點(diǎn)P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點(diǎn)P在何處時,α+β最???

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由二項(xiàng)式系數(shù)性質(zhì),的展開式中所有二項(xiàng)式系數(shù)和為計(jì)算.【詳解】的二項(xiàng)展開式中二項(xiàng)式系數(shù)和為,.故選:C.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)式系數(shù)性質(zhì)是解題關(guān)鍵.2、A【解析】

用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點(diǎn)睛】本題考查了并集及其運(yùn)算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.3、D【解析】

利用的周期性先將復(fù)數(shù)化簡為即可得到答案.【詳解】因?yàn)?,,,所以的周期?,故,故的虛部為2,A錯誤;在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,在第二象限,B錯誤;的共軛復(fù)數(shù)為,C錯誤;,D正確.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識,是一道基礎(chǔ)題.4、A【解析】

由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點(diǎn)G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.5、D【解析】

由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點(diǎn)睛】本題主要考查了不等式恒成立問題,導(dǎo)數(shù)的綜合應(yīng)用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.6、D【解析】

根據(jù)題意利用垂直直線斜率間的關(guān)系建立不等式再求解即可.【詳解】因?yàn)檫^點(diǎn)M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點(diǎn)睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎(chǔ)題.7、D【解析】

根據(jù)題意得,設(shè)與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因?yàn)椋?,則,所以,設(shè)與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算以及共線定理和單位向量的定義.8、A【解析】

利用間接法求解,首先對6門課程全排列,減去“樂”排在第一節(jié)的情況,再減去“射”和“御”兩門課程相鄰的情況,最后還需加上“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰的情況;【詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當(dāng)“樂”排在第一節(jié)有(種),當(dāng)“射”和“御”兩門課程相鄰時有(種),當(dāng)“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰時有(種),則滿足“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰的排法有(種),故選:.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,注意“樂”的排列對“射”和“御”兩門課程相鄰的影響,屬于中檔題.9、B【解析】

先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,再利用冪函數(shù)f(x)的單調(diào)性,即可得到a,b,c的大小關(guān)系.【詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(diǎn)(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點(diǎn)睛】本題主要考查了冪函數(shù)的性質(zhì),以及利用函數(shù)的單調(diào)性比較函數(shù)值大小,屬于中檔題.10、C【解析】

由題意利用兩個向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點(diǎn)睛】本題主要考查兩個向量的數(shù)量積的定義和公式,屬于基礎(chǔ)題.11、A【解析】

先根據(jù)已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點(diǎn)睛】本題主要考查斜二測畫法的定義和三角形面積的計(jì)算,意在考察學(xué)生對這些知識的掌握水平和分析推理能力.12、C【解析】

先畫出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因?yàn)樵谏蠁握{(diào)遞增,且,所以當(dāng)時,;當(dāng)時,,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當(dāng)時等號成立).故選:C【點(diǎn)睛】此題考查的是兩個向量的數(shù)量積的最小值,利用了導(dǎo)數(shù)求解,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

二面角平面角為,點(diǎn)Q到底面的距離為,點(diǎn)Q到定直線得距離為d,則.再由點(diǎn)Q到底面的距離與到點(diǎn)P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【詳解】解:如圖,設(shè)二面角平面角為,點(diǎn)Q到底面的距離為,點(diǎn)Q到定直線的距離為d,則,即.∵點(diǎn)Q到底面的距離與到點(diǎn)P的距離之比為正常數(shù)k,∴,則,∵動點(diǎn)Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【點(diǎn)睛】本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.14、2【解析】

在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),再根據(jù)常數(shù)項(xiàng)等于-160求得實(shí)數(shù)a的值.【詳解】∵二項(xiàng)式(ax-1x)令6-2r=0,求得r=3,可得常數(shù)項(xiàng)為-C63故答案為:2.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.15、【解析】

先化簡函數(shù)的解析式,在求出,從而求得的值.【詳解】由題意,函數(shù)可化簡為,所以,所以.故答案為:0.【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的應(yīng)用,以及導(dǎo)數(shù)的運(yùn)算和函數(shù)值的求解,其中解答中正確化簡函數(shù)的解析式,準(zhǔn)確求解導(dǎo)數(shù)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.16、【解析】

,由余弦定理,得,得,,,所以,所以.點(diǎn)睛:本題考查平面向量的綜合應(yīng)用.本題中存在垂直關(guān)系,所以在線性表示的過程中充分利用垂直關(guān)系,得到,所以本題轉(zhuǎn)化為求長度,利用余弦定理和面積公式求解即可.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】

(1)由頻率分布直方圖中所有頻率(小矩形面積)之和為1可計(jì)算出值;(2)由頻數(shù)分布表知一等品、二等品、三等品的概率分別為.,選2件產(chǎn)品,支付的費(fèi)用的所有取值為240,300,360,420,480,由相互獨(dú)立事件的概率公式分別計(jì)算出概率,得概率分布列,由公式計(jì)算出期望.【詳解】解:(1)據(jù)題意,得所以(2)據(jù)表1分析知,從所有產(chǎn)品中隨機(jī)抽一件是一等品、二等品、三等品的概率分別為.隨機(jī)變量的所有取值為240,300,360,420,480.隨機(jī)變量的分布列為240300360420480所以(元)【點(diǎn)睛】本題考查頻率分布直方圖,頻數(shù)分布表,考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望,解題時掌握性質(zhì):頻率分布直方圖中所有頻率和為1.本題考查學(xué)生的數(shù)據(jù)處理能力,屬于中檔題.18、(Ⅰ),;(Ⅱ)見解析【解析】

(Ⅰ)由,且成等差數(shù)列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項(xiàng)相消法求,即可得到本題答案.【詳解】(Ⅰ)因?yàn)閿?shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,,可設(shè)公比為q,,又成等差數(shù)列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因?yàn)?,所以?【點(diǎn)睛】本題主要考查等差等比數(shù)列的綜合應(yīng)用,以及用裂項(xiàng)相消法求和并證明不等式,考查學(xué)生的運(yùn)算求解能力和推理證明能力.19、(1);(2)證明見解析.【解析】

(1)分類討論求解絕對值不等式即可;(2)由(1)中所得函數(shù),求得最小值,再利用均值不等式即可證明.【詳解】(1)當(dāng)時,等價于,該不等式恒成立,當(dāng)時,等價于,該不等式解集為,當(dāng)時,等價于,解得,綜上,或,所以不等式的解集為.(2),易得的最小值為1,即因?yàn)?,,,所以,,,所以,?dāng)且僅當(dāng)時等號成立.【點(diǎn)睛】本題考查利用分類討論求解絕對值不等式,涉及利用均值不等式證明不等式,屬綜合中檔題.20、(1)證明見解析(2)【解析】

(1)取中點(diǎn),連接,根據(jù)菱形的性質(zhì),結(jié)合線面垂直的判定定理和性質(zhì)進(jìn)行證明即可;(2)根據(jù)面面垂直的判定定理和性質(zhì)定理,可以確定點(diǎn)到直線的距離即為點(diǎn)到平面的距離,結(jié)合垂線段的性質(zhì)可以確定點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.利用空間向量夾角公式,結(jié)合同角的三角函數(shù)關(guān)系式進(jìn)行求解即可.【詳解】(1)證明:取中點(diǎn),連接,因?yàn)樗倪呅螢榱庑吻?所以,因?yàn)?,所以,又,所以平面,因?yàn)槠矫妫?同理可證,因?yàn)椋云矫?(2)解:由(1)得平面,所以平面平面,平面平面.所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離.過作的垂線段,在所有的垂線段中長度最大的為,此時必過的中點(diǎn),因?yàn)闉橹悬c(diǎn),所以此時,點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.則所以平面的一個法向量為,設(shè)平面的法向量為,則即取,則,,所以,所以面與面所成二面角的正弦值為.【點(diǎn)睛】本題考查了線面垂直的判定定理和性質(zhì)的應(yīng)用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論