版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)江蘇商貿(mào)職業(yè)學(xué)院
《綜合評(píng)價(jià)》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中的模型選擇需要根據(jù)問(wèn)題的特點(diǎn)和數(shù)據(jù)的性質(zhì)來(lái)決定。假設(shè)要預(yù)測(cè)股票價(jià)格的短期波動(dòng),數(shù)據(jù)具有高噪聲和非線性特征。以下哪種模型在處理這種復(fù)雜的金融數(shù)據(jù)時(shí)更有可能取得較好的預(yù)測(cè)效果?()A.線性回歸模型B.決策樹模型C.支持向量回歸模型D.深度學(xué)習(xí)模型2、數(shù)據(jù)可視化在數(shù)據(jù)分析中有助于直觀地理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)的銷售額分布情況,以下關(guān)于數(shù)據(jù)可視化選擇的描述,正確的是:()A.使用折線圖,因?yàn)樗軌蚯逦仫@示銷售額隨時(shí)間的變化趨勢(shì)B.采用柱狀圖,能直觀對(duì)比不同地區(qū)銷售額的差異C.選擇餅圖,以便準(zhǔn)確呈現(xiàn)各地區(qū)銷售額占總銷售額的比例D.運(yùn)用散點(diǎn)圖,可分析銷售額與其他相關(guān)因素的關(guān)系3、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘是一種高級(jí)的技術(shù)。以下關(guān)于數(shù)據(jù)挖掘的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以從大量的數(shù)據(jù)中發(fā)現(xiàn)隱藏的模式和規(guī)律B.數(shù)據(jù)挖掘可以使用機(jī)器學(xué)習(xí)算法進(jìn)行數(shù)據(jù)的分類、聚類和預(yù)測(cè)C.數(shù)據(jù)挖掘需要專業(yè)的技術(shù)和知識(shí),對(duì)于普通用戶來(lái)說(shuō)難以掌握D.數(shù)據(jù)挖掘的結(jié)果一定是準(zhǔn)確無(wú)誤的,可以直接用于決策4、對(duì)于一個(gè)包含大量數(shù)值型數(shù)據(jù)的數(shù)據(jù)集,若要快速找到數(shù)據(jù)的中位數(shù),以下哪種算法較為高效?()A.排序后取中間值B.基于分治思想的算法C.隨機(jī)選擇算法D.以上算法效率差不多5、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的有效性可以通過(guò)多種方式進(jìn)行評(píng)估。以下關(guān)于數(shù)據(jù)分析方法有效性評(píng)估的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)分析方法的有效性可以通過(guò)與實(shí)際情況進(jìn)行對(duì)比來(lái)評(píng)估B.數(shù)據(jù)分析方法的有效性可以通過(guò)與其他方法進(jìn)行比較來(lái)評(píng)估C.數(shù)據(jù)分析方法的有效性可以通過(guò)模擬數(shù)據(jù)進(jìn)行測(cè)試來(lái)評(píng)估D.數(shù)據(jù)分析方法的有效性一旦確定就不能再進(jìn)行調(diào)整和改進(jìn)6、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)能有效描述數(shù)據(jù)特征。假設(shè)要分析一組學(xué)生考試成績(jī)的集中趨勢(shì)和離散程度,以下關(guān)于統(tǒng)計(jì)指標(biāo)選擇的描述,正確的是:()A.僅使用平均數(shù)來(lái)描述成績(jī)的集中趨勢(shì),忽略中位數(shù)和眾數(shù)B.用方差衡量離散程度,但不考慮標(biāo)準(zhǔn)差C.同時(shí)采用平均數(shù)、中位數(shù)和眾數(shù)來(lái)描述集中趨勢(shì),并結(jié)合標(biāo)準(zhǔn)差和方差衡量離散程度D.隨意選擇一個(gè)統(tǒng)計(jì)指標(biāo),不考慮其適用場(chǎng)景和數(shù)據(jù)特點(diǎn)7、假設(shè)要分析一個(gè)城市的交通流量數(shù)據(jù),以優(yōu)化交通信號(hào)燈的設(shè)置和道路規(guī)劃。數(shù)據(jù)包括不同時(shí)間段、不同路段的車流量、車速等信息。為了找到交通擁堵的規(guī)律和原因,以下哪個(gè)分析角度可能是關(guān)鍵的?()A.時(shí)空分析B.基于車型的分類分析C.只關(guān)注高峰時(shí)段的分析D.隨機(jī)抽樣分析8、當(dāng)分析數(shù)據(jù)的分布特征時(shí),以下哪個(gè)圖形可以直觀地展示數(shù)據(jù)的眾數(shù)?()A.直方圖B.莖葉圖C.箱線圖D.餅圖9、對(duì)于一個(gè)具有大量數(shù)據(jù)的數(shù)據(jù)庫(kù),若要提高查詢效率,以下哪種技術(shù)可能會(huì)被使用?()A.緩存B.分區(qū)C.索引優(yōu)化D.以上都是10、數(shù)據(jù)分析中的生存分析常用于研究事件發(fā)生的時(shí)間。假設(shè)我們要研究患者接受某種治療后疾病復(fù)發(fā)的時(shí)間,以下哪個(gè)概念是生存分析中的關(guān)鍵指標(biāo)?()A.生存函數(shù)B.風(fēng)險(xiǎn)函數(shù)C.中位生存時(shí)間D.以上都是11、在數(shù)據(jù)分析的抽樣方法中,假設(shè)要從一個(gè)大規(guī)模的數(shù)據(jù)集中抽取一部分樣本進(jìn)行分析。為了保證樣本具有代表性,以下哪種抽樣方法可能是較好的選擇?()A.簡(jiǎn)單隨機(jī)抽樣,每個(gè)個(gè)體被抽取的概率相等B.分層抽樣,按不同層次分別抽樣C.系統(tǒng)抽樣,按照一定的間隔抽取D.不進(jìn)行抽樣,直接分析整個(gè)數(shù)據(jù)集12、對(duì)于數(shù)據(jù)可視化,假設(shè)要展示不同地區(qū)在過(guò)去十年間的經(jīng)濟(jì)增長(zhǎng)趨勢(shì)。數(shù)據(jù)涵蓋多個(gè)指標(biāo),且地區(qū)之間存在較大差異。為了清晰、直觀地呈現(xiàn)數(shù)據(jù)的變化和對(duì)比,以下哪種可視化圖表可能是最適合的?()A.柱狀圖,分別展示每個(gè)地區(qū)每年的經(jīng)濟(jì)數(shù)據(jù)B.折線圖,呈現(xiàn)每個(gè)地區(qū)經(jīng)濟(jì)數(shù)據(jù)隨時(shí)間的變化C.餅圖,展示各地區(qū)在某一年的經(jīng)濟(jì)占比D.箱線圖,反映數(shù)據(jù)的分布情況13、數(shù)據(jù)分析在金融領(lǐng)域有著廣泛的應(yīng)用。假設(shè)一家銀行要評(píng)估客戶的信用風(fēng)險(xiǎn)。以下關(guān)于數(shù)據(jù)分析在金融中的描述,哪一項(xiàng)是不正確的?()A.可以建立信用評(píng)分模型,預(yù)測(cè)客戶違約的可能性B.分析市場(chǎng)趨勢(shì),制定投資策略C.數(shù)據(jù)分析在金融領(lǐng)域的應(yīng)用完全沒(méi)有風(fēng)險(xiǎn),不會(huì)導(dǎo)致錯(cuò)誤的決策D.監(jiān)測(cè)金融交易,防范欺詐行為14、主成分分析(PCA)是一種數(shù)據(jù)降維技術(shù)。假設(shè)要對(duì)高維數(shù)據(jù)進(jìn)行降維以便于分析和可視化,以下關(guān)于主成分分析的描述,正確的是:()A.不考慮數(shù)據(jù)的方差和相關(guān)性,直接進(jìn)行主成分提取B.提取過(guò)多的主成分,導(dǎo)致信息冗余,增加分析的復(fù)雜性C.合理確定保留的主成分?jǐn)?shù)量,使其能夠在最大程度保留原始數(shù)據(jù)信息的同時(shí)降低維度,并解釋主成分的含義D.認(rèn)為主成分分析可以適用于所有類型的數(shù)據(jù),不進(jìn)行數(shù)據(jù)的預(yù)處理和適用性評(píng)估15、在進(jìn)行回歸分析時(shí),如果殘差不滿足正態(tài)分布,可能會(huì)對(duì)模型產(chǎn)生什么影響?()A.影響模型的準(zhǔn)確性B.導(dǎo)致系數(shù)估計(jì)有偏差C.模型的預(yù)測(cè)能力下降D.以上都是二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的異常傳播分析,包括異常的擴(kuò)散路徑、影響范圍等方面的分析方法和應(yīng)用。2、(本題5分)在進(jìn)行分類模型評(píng)估時(shí),如何繪制混淆矩陣?請(qǐng)解釋混淆矩陣的元素含義和如何通過(guò)混淆矩陣計(jì)算評(píng)估指標(biāo)。3、(本題5分)解釋數(shù)據(jù)可視化中的交互設(shè)計(jì)原則,說(shuō)明如何通過(guò)交互設(shè)計(jì)提升用戶對(duì)數(shù)據(jù)的理解和探索能力,并舉例說(shuō)明。4、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的探索性分析(EDA)?請(qǐng)說(shuō)明EDA的主要步驟和方法,以及它對(duì)后續(xù)分析的作用。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在線旅游平臺(tái)的目的地推薦可以基于用戶偏好和歷史數(shù)據(jù)進(jìn)行優(yōu)化。請(qǐng)論述如何通過(guò)數(shù)據(jù)分析來(lái)實(shí)現(xiàn)精準(zhǔn)的目的地推薦、行程規(guī)劃和個(gè)性化的旅游體驗(yàn),以及如何處理數(shù)據(jù)的多樣性和復(fù)雜性。2、(本題5分)影視娛樂(lè)行業(yè)通過(guò)在線平臺(tái)收集了大量的用戶觀影和消費(fèi)數(shù)據(jù)。分析如何運(yùn)用數(shù)據(jù)分析手段,如內(nèi)容推薦算法優(yōu)化、觀眾喜好預(yù)測(cè)等,制作更符合觀眾需求的影視作品,提高用戶滿意度和平臺(tái)收益,同時(shí)探討在數(shù)據(jù)多樣性處理和文化差異影響方面可能面臨的問(wèn)題及應(yīng)對(duì)方法。3、(本題5分)金融行業(yè)面臨著復(fù)雜的風(fēng)險(xiǎn)和競(jìng)爭(zhēng)。選取一家商業(yè)銀行,論述如何利用數(shù)據(jù)分析來(lái)評(píng)估客戶信用風(fēng)險(xiǎn),包括數(shù)據(jù)來(lái)源、變量選擇、建立信用評(píng)分模型,以及如何通過(guò)模型監(jiān)控和優(yōu)化來(lái)降低不良貸款率,同時(shí)提高信貸審批效率和準(zhǔn)確性。4、(本題5分)探討在電商平臺(tái)的用戶流失預(yù)測(cè)中,如何運(yùn)用數(shù)據(jù)分析識(shí)別用戶流失的特征和趨勢(shì),采取有效的用戶留存策略。5、(本題5分)在農(nóng)業(yè)生產(chǎn)中,如何利用數(shù)據(jù)分析預(yù)測(cè)氣象災(zāi)害對(duì)農(nóng)作物的影響,提前采取防范措施,降低農(nóng)業(yè)損失。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)某汽車租賃公司掌握了車輛租賃記錄、客戶信息、車輛維護(hù)成本等數(shù)據(jù)。思考如何通過(guò)這些數(shù)據(jù)進(jìn)行客戶細(xì)分和定價(jià)策略優(yōu)化。2、(本題10分)一家連鎖書店的歷史書籍區(qū)域記錄了銷售數(shù)據(jù),包括書籍朝代、作者知
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度高速充電網(wǎng)絡(luò)建設(shè)與維護(hù)管理合同3篇
- 二零二五版新能源汽車打膠系統(tǒng)合作協(xié)議3篇
- 二零二四外墻真石漆涂裝勞務(wù)合同模板規(guī)范版9篇
- 2025年度廠房物業(yè)管理與資產(chǎn)管理合同3篇
- 2025年度新能源汽車關(guān)鍵零部件RoHS環(huán)保協(xié)議書3篇
- 二零二四女方提出離婚協(xié)議包含債權(quán)債務(wù)清算及資產(chǎn)評(píng)估合同3篇
- 2025年度差旅服務(wù)定制化解決方案合同4篇
- 專用硅酸鹽水泥購(gòu)銷合同2024版版
- 二零二五年度道路安全標(biāo)志牌維護(hù)與管理合同3篇
- 2025年度咖啡廳店鋪轉(zhuǎn)讓及飲品制作服務(wù)合同3篇
- 《沙盤技術(shù)》教學(xué)大綱
- (主城一診)重慶市2025年高2025屆高三學(xué)業(yè)質(zhì)量調(diào)研抽測(cè) (第一次)地理試卷(含答案)
- 職業(yè)培訓(xùn)師培訓(xùn)課件
- (新版)多旋翼無(wú)人機(jī)超視距駕駛員執(zhí)照參考試題庫(kù)(含答案)
- 哈利波特中英文全集
- DLT5210.1-電力建設(shè)施工質(zhì)量驗(yàn)收及評(píng)價(jià)規(guī)程全套驗(yàn)評(píng)表格之歐陽(yáng)法創(chuàng)編
- 500句漢語(yǔ)日常對(duì)話
- 《抽搐的鑒別與處理》課件
- 2024-2030年中國(guó)凈菜加工行業(yè)產(chǎn)能預(yù)測(cè)及投資規(guī)模分析報(bào)告版
- 自來(lái)水廠建設(shè)項(xiàng)目可行性研究報(bào)告
- 承諾保證協(xié)議
評(píng)論
0/150
提交評(píng)論